Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective

We present theoretical results on the random wavelet coefficients covariance structure. We use simple properties of the coefficients to derive a recursive way to compute the within‐ and across‐scale covariances. We point out a useful link between the algorithm proposed and the two‐dimensional discrete wavelet transform. We then focus on Bayesian wavelet shrinkage for estimating a function from noisy data. A prior distribution is imposed on the coefficients of the unknown function. We show how our findings on the covariance structure make it possible to specify priors that take into account the full correlation between coefficients through a parsimonious number of hyperparameters. We use Markov chain Monte Carlo methods to estimate the parameters and illustrate our method on bench‐mark simulated signals.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[3]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[4]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[5]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[6]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[8]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[9]  Peter Muller,et al.  Alternatives to the Gibbs Sampling Scheme , 1992 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[12]  Y. Meyer Wavelets and Operators , 1993 .

[13]  Ravi Mazumdar,et al.  On the correlation structure of the wavelet coefficients of fractional Brownian motion , 1994, IEEE Trans. Inf. Theory.

[14]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[15]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[16]  Brani Vidakovic,et al.  Wavelet Shrinkage with Aane Bayes Rules with Applications , 1995 .

[17]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[18]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[19]  Carl Taswell,et al.  WavBox 4: A Software Toolbox for Wavelet Transforms and Adaptive Wavelet Packet Decompositions , 1995 .

[20]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[21]  Yazhen Wang Function estimation via wavelet shrinkage for long-memory data , 1996 .

[22]  G. Nason Wavelet Shrinkage using Cross-validation , 1996 .

[23]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[24]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[25]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[26]  B. Vidakovic Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .

[27]  Arne Kovac,et al.  Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .

[28]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[29]  M. Clyde,et al.  Multiple shrinkage and subset selection in wavelets , 1998 .