Robust stability and performance analysis based on integral quadratic constraints

The integral quadratic constraints (IQC) approach facilitates a systematic and efficient analysis of robust stability and performance for uncertain dynamical systems based on linear matrix inequality (LMI) optimization. With the intention to make the IQC analysis tools more accessible to control scientists and engineers, we present in this paper a tutorial overview in three main parts: i) the general setup and the basic IQC theorem, ii) an extensive survey on the formulation and parametrization of multipliers based on LMI constraints, and iii) a detailed illustration of how the tools can be applied.

[1]  Michael G. Safonov,et al.  All multipliers for repeated monotone nonlinearities , 2002, IEEE Trans. Autom. Control..

[2]  Alexandre Megretski,et al.  Specialized fast algorithms for IQC feasibility and optimization problems , 2004, Autom..

[3]  U. Jonsson A Popov criterion for systems with slowly time-varying parameters , 1999 .

[4]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[5]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[6]  Carsten W. Scherer,et al.  Stability Analysis for Bilateral Teleoperation: An IQC Formulation , 2012, IEEE Transactions on Robotics.

[7]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[8]  Yung-Shan Chou,et al.  Stability multipliers and μ upper bounds: connections and implications for numerical verification of frequency domain conditions , 1999, IEEE Trans. Autom. Control..

[9]  R. Kashyap,et al.  Robust Stability and Performance Analysis of Uncertain Systems Using Linear Matrix Inequalities , 1999 .

[10]  F. Jabbari,et al.  H/sub /spl infin// design for systems with input saturation: an LMI approach , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[11]  C. W. Scherer,et al.  Relaxations for Robust Linear Matrix Inequality Problems with Verifications for Exactness , 2005, SIAM J. Matrix Anal. Appl..

[12]  Ulf Jönsson,et al.  Optimization of integral quadratic constraints , 1999 .

[13]  Chung-Yao Kao,et al.  Stability analysis for structured feedback interconnections of distributed-parameter systems and time-varying uncertainties , 2013, 2013 European Control Conference (ECC).

[14]  Matthew C. Turner,et al.  Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches , 2016, Eur. J. Control.

[15]  Carsten W. Scherer,et al.  Robust output feedback control against disturbance filter uncertainty described by dynamic integral quadratic constraints , 2010 .

[16]  C. Scherer Multiobjective H/sub 2//H/sub /spl infin// control , 1995 .

[17]  Carsten W. Scherer,et al.  Robust ℒ︁2‐gain feedforward control of uncertain systems using dynamic IQCs , 2009 .

[18]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[19]  Raffaello D'Andrea,et al.  Distributed Control of Spatially Reversible Interconnected Systems with Boundary Conditions , 2005, SIAM J. Control. Optim..

[20]  Decision Systems.,et al.  Integral quadratic constraints for systems with rate limiters , 1997 .

[21]  R. O'Shea An improved frequency time domain stability criterion for autonomous continuous systems , 1966 .

[22]  M. Athans,et al.  A multiloop generalization of the circle criterion for stability margin analysis , 1981 .

[23]  Carsten W. Scherer,et al.  Structured H∞-optimal control for nested interconnections: A state-space solution , 2013, Syst. Control. Lett..

[24]  Ulf T. Jönsson,et al.  IQC robustness analysis for feedback interconnections of unstable distributed parameter systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[25]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[26]  G. Scorletti,et al.  Robustness analysis with time-delays , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[27]  Fernando Paganini,et al.  Convex methods for robust H2 analysis of continuous-time systems , 1999, IEEE Trans. Autom. Control..

[28]  Raffaello D'Andrea,et al.  Convex and finite-dimensional conditions for controller synthesis with dynamic integral constraints , 2001, IEEE Trans. Autom. Control..

[29]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[30]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[31]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[32]  Ulf T. Jönsson,et al.  Characterization of Robust Stability of a Class of Interconnected Systems , 2007, 2007 American Control Conference.

[33]  Matthew C. Turner,et al.  L gain bounds for systems with sector bounded and slope-restricted nonlinearities , 2012 .

[34]  A. Megretski,et al.  The Zames-Falb IQC for critically stable systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[35]  Graziano Chesi,et al.  An LMI-based approach for characterizing the solution set of polynomial systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[36]  Carsten W. Scherer,et al.  A synthesis framework for robust gain-scheduling controllers , 2014, Autom..

[37]  Mario Innocenti,et al.  LPV Synthesis with Integral Quadratic Constraints for Distributed Control of Interconnected Systems , 2009 .

[38]  K. Poolla,et al.  Robust performance against time-varying structured perturbations , 1995, IEEE Trans. Autom. Control..

[39]  Chung-Yao Kao,et al.  Simple stability criteria for systems with time-varying delays , 2004, Autom..

[40]  Cédric Langbort,et al.  Distributed control design for systems interconnected over an arbitrary graph , 2004, IEEE Transactions on Automatic Control.

[41]  Alexander Lanzon,et al.  LMI searches for anticausal and noncausal rational Zames-Falb multipliers , 2014, Syst. Control. Lett..

[42]  A. Megretski,et al.  Analysis of periodically forced uncertain feedback systems , 2003 .

[43]  Geir E. Dullerud,et al.  Distributed control of heterogeneous systems , 2004, IEEE Transactions on Automatic Control.

[44]  Carsten W. Scherer,et al.  Robustness with dynamic IQCs: An exact state-space characterization of nominal stability with applications to robust estimation , 2008, Autom..

[45]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[46]  Anders Rantzer,et al.  Systems with uncertain parameters — Time‐variations with bounded derivatives , 1996 .

[47]  Ulf T. Jönsson,et al.  A Popov criterion for networked systems , 2007, Syst. Control. Lett..

[48]  M. Vidyasagar On the well-posedness of large-scale interconnected systems , 1980 .

[49]  Carsten W. Scherer,et al.  A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems , 2016, SIAM J. Control. Optim..

[50]  Carsten W. Scherer,et al.  Robust Controller Synthesis Is Convex for Systems without Control Channel Uncertainties , 2012, ROCOND.

[51]  Venkataramanan Balakrishnan,et al.  Lyapunov functionals in complex μ analysis , 2002, IEEE Trans. Autom. Control..

[52]  José Claudio Geromel,et al.  Optimal linear filtering under parameter uncertainty , 1999, IEEE Trans. Signal Process..

[53]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[54]  Gérard Scorletti,et al.  Robust L2-Gain Observation for structured uncertainties: An LMI approach , 2011, IEEE Conference on Decision and Control and European Control Conference.

[55]  Pierre Apkarian,et al.  IQC analysis and synthesis via nonsmooth optimization , 2006, Syst. Control. Lett..

[56]  Minyue Fu,et al.  Integral quadratic constraint approach vs. multiplier approach , 2005, Autom..

[57]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[58]  Geir E. Dullerud,et al.  Distributed control design for spatially interconnected systems , 2003, IEEE Trans. Autom. Control..

[59]  J. Wen,et al.  Robustness analysis of LTI systems with structured incrementally sector bounded nonlinearities , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[60]  A. Rantzer,et al.  Stability criteria based on integral quadratic constraints , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[61]  Fan Wang,et al.  Efficient computation of a guaranteed lower bound on the robust stability margin for a class of uncertain systems , 1999, IEEE Trans. Autom. Control..

[62]  G. Ferreres,et al.  Efficient convex design of robust feedforward controllers , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[63]  M. Morari,et al.  Computational complexity of μ calculation , 1994, IEEE Trans. Autom. Control..

[64]  Michael G. Safonov,et al.  All stability multipliers for repeated MIMO nonlinearities , 2005, Syst. Control. Lett..

[65]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[66]  Carsten W. Scherer,et al.  IQC‐synthesis with general dynamic multipliers , 2014 .

[67]  A. Schaft G.E. Dullerud and F. Paganini - A course in robust control theory: a convex approach. Berlin: Springer-Verlag, 2000 (Text in Applied Mathematics ; 36) , 2001 .

[68]  Venkataramanan Balakrishnan,et al.  Semidefinite programming duality and linear time-invariant systems , 2003, IEEE Trans. Autom. Control..

[69]  Fernando Paganini,et al.  Linear matrix inequality methods for robust H 2 analysis: a survey with comparisons , 1999 .

[70]  Alexandre Megretski,et al.  New IQC for quasi‐concave nonlinearities , 2001 .

[71]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[72]  Carsten W. Scherer,et al.  Gain-Scheduling Control With Dynamic Multipliers by Convex Optimization , 2015, SIAM J. Control. Optim..

[73]  Manfred Morari,et al.  Multiplier theory for stability analysis of anti-windup control systems , 1999, Autom..

[74]  Alexandre Megretski,et al.  New results for analysis of systems with repeated nonlinearities , 2001, Autom..

[75]  Raffaello D'Andrea,et al.  Generalized ℓ2 synthesis , 1996 .

[76]  Fernando Paganini,et al.  Frequency domain conditions for robust H2 performance , 1999, IEEE Trans. Autom. Control..

[77]  Matthew C. Turner,et al.  On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities , 2009, IEEE Transactions on Automatic Control.

[78]  Ulf Jönsson Stability of Uncertain Systems with Hysteresis Nonlinearities , 1996 .

[79]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[80]  Anders Hansson,et al.  Efficient solution of linear matrix inequalities for integral quadratic constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[81]  G. Zames Approximate analysis of randomly excited nonlinear controls , 1967, IEEE Transactions on Automatic Control.

[82]  Hisaya Fujioka,et al.  Computational aspects of IQC-based stability analysis for sampled-data feedback systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[83]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[84]  Ulf T. Jönsson,et al.  Robustness Analysis for Feedback Interconnections of Distributed Systems via Integral Quadratic Constraints , 2012, IEEE Transactions on Automatic Control.

[85]  Raffaello D'Andrea,et al.  Generalized l2 synthesis , 1999, IEEE Trans. Autom. Control..

[86]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[87]  Carsten W. Scherer,et al.  ROBUST STABILITY ANALYSIS TESTS FOR LINEAR TIME-VARYING PERTURBATIONS WITH BOUNDED RATES-OF-VARIATION , 2006 .

[88]  V. Balakrishnan Linear matrix inequalities in robustness analysis with multipliers , 1995 .

[89]  U. Jönsson Stability analysis with Popov multipliers and integral quadratic constraints , 1997 .

[90]  Jesús A. De Loera,et al.  An effective version of Pólya's theorem on positive definite forms , 1996 .

[91]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[92]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[93]  F. Paganini A set-based approach for white noise modeling , 1996, IEEE Trans. Autom. Control..

[94]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[95]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[96]  Alexandre Megretski,et al.  IQC characterizations of signal classes , 1999, 1999 European Control Conference (ECC).

[97]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[98]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[99]  Ulf Jönsson,et al.  Robustness Analysis of Uncertain and Nonlinear Systems , 1996 .

[100]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[101]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[102]  B. Reznick,et al.  A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra , 2001 .

[103]  A. Rantzer Friction analysis based on integral quadratic constraints , 2001 .

[104]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[105]  Alexandre Megretski,et al.  The Zames-Falb IQC for systems with integrators , 2000, IEEE Trans. Autom. Control..

[106]  Carsten W. Scherer,et al.  Robust Performance Analysis for Structured Linear Time-Varying Perturbations With Bounded Rates-of-Variation , 2007, IEEE Transactions on Automatic Control.

[107]  Tomomichi Hagiwara,et al.  LMI representation of the shifted Popov criterion , 2000, Autom..

[108]  Chung-Yao Kao,et al.  Stability analysis of systems with uncertain time-varying delays , 2007, Autom..

[109]  A. Helmersson An IQC-Based Stability Criterion for Systems with Slowly Varying Parameters , 1999 .

[110]  Carsten W. Scherer Distributed control with dynamic dissipation constraints , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[111]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[112]  Chung-Yao Kao,et al.  On Stability of Discrete-Time LTI Systems With Varying Time Delays , 2012, IEEE Transactions on Automatic Control.

[113]  M. Safonov,et al.  IQC robustness analysis for time‐delay systems , 2001 .

[114]  Alexandre Megretski,et al.  Robustness of periodic trajectories , 2002, IEEE Trans. Autom. Control..

[115]  Chung-Yao Kao,et al.  Control synthesis with dynamic integral quadratic constraints-LMI approach , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[116]  Carsten W. Scherer,et al.  Robust Stability Analysis against Perturbations of Smoothly Time-Varying Parameters , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[117]  K. Poolla,et al.  A linear matrix inequality approach to peak‐to‐peak gain minimization , 1996 .

[118]  Carsten W. Scherer,et al.  Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..

[119]  Panos J. Antsaklis,et al.  Distributed Control with Integral Quadratic Constraints , 2008 .

[120]  M. Safonov,et al.  Zames-Falb multipliers for MIMO nonlinearities , 2000 .

[121]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[122]  Ulf T. Jönsson Robustness of trajectories with finite time extent , 2002, Autom..

[123]  Harish K. Pillai,et al.  Lossless and Dissipative Distributed Systems , 2001, SIAM J. Control. Optim..