Invited review article: IceCube: an instrument for neutrino astronomy.

Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km(3) of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects.

[1]  F. Halzen,et al.  Prospects for identifying the sources of the Galactic cosmic rays with IceCube , 2008, 0803.0314.

[2]  J. Bahcall,et al.  High-energy neutrinos from astrophysical sources: An Upper bound , 1998, hep-ph/9807282.

[3]  E. al.,et al.  The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector , 2010, 1004.2357.

[4]  B. Barish,et al.  Cosmic-ray muons in the deep ocean , 1990 .

[5]  M. Reno,et al.  Prompt neutrino fluxes from atmospheric charm , 2008, 0806.0418.

[6]  F. Halzen,et al.  Astronomy and astrophysics with neutrinos , 2008 .

[7]  D. Berley,et al.  Discovery of TeV Gamma-Ray Emission from the Cygnus Region of the Galaxy , 2006, astro-ph/0611691.

[8]  E. al.,et al.  First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope , 2006, astro-ph/0606229.

[9]  J. Bahcall,et al.  HIGH ENERGY NEUTRINOS FROM COSMOLOGICAL GAMMA-RAY BURST FIREBALLS , 1997, astro-ph/9701231.

[10]  D. Nygren,et al.  A measurement of the cosmic-ray muon flux with a module of the NESTOR neutrino telescope , 2005 .

[11]  S. Klein O ct 2 00 8 Recent ν s from IceCube , 2008 .

[12]  Lisa Gerhardt,et al.  A prototype station for ARIANNA: A detector for cosmic neutrinos , 2010, 1005.5193.

[13]  T. Kajita,et al.  Observation of atmospheric neutrinos , 2001 .

[14]  J. Learned,et al.  Detecting Nutau Oscillations as PeV Energies , 1994, hep-ph/9408296.

[15]  Washington University in St. Louis,et al.  New limits on the ultrahigh energy cosmic neutrino flux from the ANITA experiment. , 2008, Physical review letters.

[16]  P. O. Hulth,et al.  Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice , 2001, Nature.

[17]  B. Viren,et al.  The Super-Kamiokande detector , 2003 .

[18]  S. Klein Cascades from nu_E above 1020 eV , 2004, astro-ph/0412546.

[19]  L. Gerhardt,et al.  Study of High pT Muons in IceCube , 2008, 0909.0055.

[20]  D. Hooper,et al.  Neutrinos from individual gamma-ray bursts in the BATSE catalog , 2003, astro-ph/0302524.

[21]  J. Becker High-energy neutrinos in the context of multimessenger astrophysics , 2007, 0710.1557.

[22]  R. Bay,et al.  A deep high‐resolution optical log of dust, ash, and stratigraphy in South Pole glacial ice , 2005 .

[23]  J. Kelley,et al.  IceRay: An IceCube-centered radio-Cherenkov GZK neutrino detector , 2009, 0904.1309.

[24]  M. Schubnell,et al.  Limits on the flux of very high energy neutrinos with the Fréjus detector , 1996 .

[25]  D. Hooper,et al.  The indirect search for dark matter with IceCube , 2009, 0910.4513.

[26]  D. Berley,et al.  THE LARGE-SCALE COSMIC-RAY ANISOTROPY AS OBSERVED WITH MILAGRO , 2008, 0806.2293.

[27]  O. Botner,et al.  Muon Track Reconstruction and Data Selection Techniques in AMANDA , 2004 .

[28]  P. O. Hulth,et al.  First year performance of the IceCube neutrino telescope , 2006 .

[29]  P. O. Hulth,et al.  IceCube sensitivity for low-energy neutrinos from nearby supernovae , 2011, 1108.0171.

[30]  P. Desiati,et al.  Large Scale Cosmic Ray Anisotropy With IceCube , 2009, 0907.0498.

[31]  A. Roberts The birth of high-energy neutrino astronomy: A personal history of the DUMAND project , 1992 .

[32]  S. Kleinfelder,et al.  Gigahertz waveform sampling and digitization circuit design and implementation , 2003 .

[33]  J. P. Rodrigues,et al.  Extending the search for neutrino point sources with IceCube above the horizon. , 2009, Physical review letters.

[34]  F. Zwicky,et al.  Remarks on Super-Novae and Cosmic Rays , 1934 .

[35]  Cosmological gamma-ray bursts and the highest energy cosmic rays. , 1995, Physical review letters.

[36]  P. O. Hulth,et al.  Search for supernova neutrino bursts with the AMANDA detector , 2002 .

[37]  D. Cowen,et al.  Astrophysical tau neutrino detection in kilometer-scale Cherenkov detectors via muonic tau decay , 2006, astro-ph/0608486.

[38]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.

[39]  O. Scholten,et al.  Proceedings of the 30th International Cosmic Ray Conference , 2008 .

[40]  S. Petrera,et al.  Results from the first run of the first supermodule of the Macro detector at the Gran Sasso Laboratory , 1988 .

[41]  Park,et al.  Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. , 1987, Physical review letters.

[42]  F. Halzen The highest energy neutrinos , 2007, 0710.4158.

[43]  Astroparticle physics with high energy neutrinos: from AMANDA to IceCube , 2006, astro-ph/0602132.

[44]  Todor Stanev,et al.  Particle astrophysics with high energy neutrinos , 1995 .

[45]  S. Barwick Development of telescopes for extremely energetic neutrinos: AMANDA, ANITA, and ARIANNA , 2009 .

[46]  E. al.,et al.  Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos , 2003, astro-ph/0305196.

[47]  D. Cowen Tau Neutrinos in IceCube , 2007 .

[48]  Light tracking through ice and water—Scattering and absorption in heterogeneous media with Photonics , 2007, astro-ph/0702108.

[49]  P. O. Hulth,et al.  Optical properties of deep glacial ice at the South Pole , 2006 .

[50]  K. Hanson,et al.  Design and production of the IceCube digital optical module , 2006 .

[51]  John G. Learned,et al.  HIGH-ENERGY NEUTRINO ASTROPHYSICS , 2003 .

[52]  Observations of the Askaryan effect in ice. , 2006, Physical review letters.

[53]  J. P. Rodrigues,et al.  Calibration and characterization of the IceCube photomultiplier tube , 2010, 1002.2442.

[54]  E. al.,et al.  RICE limits on the diffuse ultrahigh energy neutrino flux , 2006, astro-ph/0601148.

[55]  S. Klein e+e- Pair production from 10 GeV to 10 ZeV , 2004, hep-ex/0402028.

[56]  R. U. Abbasi,et al.  The IceCube data acquisition system: Signal capture, digitization,and timestamping , 2008, 0810.4930.

[57]  J. Kiryluk,et al.  First search for extraterrestrial neutrino-induced cascades with IceCube , 2009, 0909.0989.

[58]  F. Halzen,et al.  Identifying Galactic PeVatrons with Neutrinos , 2009, 0902.1176.

[59]  J Madsen,et al.  Limits on a muon flux from neutralino annihilations in the sun with the IceCube 22-string detector. , 2009, Physical review letters.

[60]  I. Albuquerque,et al.  Supersymmetric and Kaluza-Klein particles multiple scattering in the Earth , 2009, 0905.3180.

[61]  J. Dumm,et al.  Methods for point source analysis in high energy neutrino telescopes , 2008, 0801.1604.

[62]  F. Aharonian,et al.  Searching for Galactic Cosmic-Ray Pevatrons with Multi-TeV Gamma Rays and Neutrinos , 2007, 0705.3011.

[63]  D. Seckel,et al.  Neutrinos from propagation of ultrahigh-energy protons , 2001, astro-ph/0101216.

[64]  M. Ahlers,et al.  GZK neutrinos after the Fermi-LAT diffuse photon flux measurement , 2010, 1005.2620.

[65]  F. Halzen,et al.  Radiography of Earth's core and mantle with atmospheric neutrinos. , 2007, Physical review letters.

[66]  S. Klein Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II , 2009 .

[67]  K. Hultqvist,et al.  IceCube: Physics, status, and future , 2010, 1003.2300.

[68]  Dirk Ryckbosch,et al.  Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II (vol 76, artn 042008, 2007) , 2007 .

[69]  C. Wiebusch,et al.  Physics Capabilities of the IceCube DeepCore Detector , 2009, 0907.2263.

[70]  F. Halzen,et al.  Physics reach of high-energy and high-statistics icecube atmospheric neutrino data , 2005, hep-ph/0502223.

[71]  T. Stanev,et al.  Status, performance, and first results of the IceTop array , 2009, 0903.0576.

[72]  S.R. Klein IceCube: A Cubic Kilometer Radiation Detector , 2009, IEEE Transactions on Nuclear Science.

[73]  G. Ewan The Sudbury neutrino observatory , 2000 .

[74]  E. al.,et al.  Search for a diffuse flux of high-energy extraterrestrial neutrinos with the NT200 neutrino telescope , 2005, astro-ph/0508675.

[75]  Raymond Davis,et al.  Nobel Lecture: A half-century with solar neutrinos , 2003 .

[76]  C. Spiering,et al.  The BAIKAL Neutrino Project: Status Report , 2000 .

[77]  Danzengluobu,et al.  Anisotropy and Corotation of Galactic Cosmic Rays , 2006, Science.

[78]  Newark,et al.  Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment , 2010, 1011.5004.

[79]  F. T. Collaboration,et al.  Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector , 2005, astro-ph/0508468.

[80]  E. Migneco Progress and latest results from Baikal, Nestor, NEMO and KM3NeT , 2008 .