Sequential Monte Carlo samplers

Summary.  We propose a methodology to sample sequentially from a sequence of probability distributions that are defined on a common space, each distribution being known up to a normalizing constant. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time by using sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make parallel Markov chain Monte Carlo algorithms interact to perform global optimization and sequential Bayesian estimation and to compute ratios of normalizing constants. We illustrate these algorithms for various integration tasks arising in the context of Bayesian inference.

[1]  J. M. Hammersley,et al.  Conditional Monte Carlo , 1956, JACM.

[2]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  M. West Approximating posterior distributions by mixtures , 1993 .

[6]  Man-Suk Oh,et al.  Integration of Multimodal Functions by Monte Carlo Importance Sampling , 1993 .

[7]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[8]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[9]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[10]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[11]  A. Raftery,et al.  Local Adaptive Importance Sampling for Multivariate Densities with Strong Nonlinear Relationships , 1996 .

[12]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[13]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[14]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[15]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[16]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[17]  A. Doucet,et al.  Joint Bayesian detection and estimation of noisy sinusoids via reversible jump MCMC , 1998 .

[18]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[19]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[20]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[21]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[22]  P. Fearnhead,et al.  An improved particle filter for non-linear problems , 1999 .

[23]  P. Green,et al.  Trans-dimensional Markov chain Monte Carlo , 2000 .

[24]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[25]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[26]  Simon J. Godsill,et al.  Improvement Strategies for Monte Carlo Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[27]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[28]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[29]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[30]  Yukito IBA,et al.  Population Monte Carlo algorithms , 2000, cond-mat/0008226.

[31]  P. Moral,et al.  Genealogies and Increasing Propagation of Chaos For Feynman-Kac and Genetic Models , 2001 .

[32]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[33]  Dan Crisan,et al.  Particle Filters - A Theoretical Perspective , 2001, Sequential Monte Carlo Methods in Practice.

[34]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[35]  N. Chopin A sequential particle filter method for static models , 2002 .

[36]  F. Liang Dynamically Weighted Importance Sampling in Monte Carlo Computation , 2002 .

[37]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.

[38]  P. Fearnhead,et al.  On‐line inference for hidden Markov models via particle filters , 2003 .

[39]  P. Moral,et al.  Annealed Feynman-Kac Models , 2003 .

[40]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[41]  P. Moral,et al.  On a Class of Genealogical and Interacting Metropolis Models , 2003 .

[42]  J. Marin,et al.  Population Monte Carlo , 2004 .

[43]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[44]  Simon Maskell Joint Tracking of Manoeuvring Targets and Classification of Their Manoeuvrability , 2004, EURASIP J. Adv. Signal Process..

[45]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[46]  C. Holmes,et al.  MCMC and the Label Switching Problem in Bayesian Mixture Modelling 1 Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modelling , 2004 .

[47]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .