Tucker Dimensionality Reduction of Three-Dimensional Arrays in Linear Time

We consider Tucker-like approximations with an $r \times r \times r$ core tensor for three-dimensional $n \times n \times n$ arrays in the case of $r \ll n$ and possibly very large $n$ (up to $10^4$-$10^6$). As the approximation contains only $\mathcal{O}(rn + r^3)$ parameters, it is natural to ask if it can be computed using only a small amount of entries of the given array. A similar question for matrices (two-dimensional tensors) was asked and positively answered in [S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudo-skeleton approximations, Linear Algebra Appl., 261 (1997), pp. 1-21]. In the present paper we extend the positive answer to the case of three-dimensional tensors. More specifically, it is shown that if the tensor admits a good Tucker approximation for some (small) rank $r$, then this approximation can be computed using only $\mathcal{O}(nr)$ entries with $\mathcal{O}(nr^{3})$ complexity.

[1]  Demetri Terzopoulos,et al.  Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.

[2]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[3]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[4]  Eugene E. Tyrtyshnikov,et al.  Incomplete Cross Approximation in the Mosaic-Skeleton Method , 2000, Computing.

[5]  S. Goreinov,et al.  The maximum-volume concept in approximation by low-rank matrices , 2001 .

[6]  Ilghiz Ibraghimov,et al.  Application of the three‐way decomposition for matrix compression , 2002, Numer. Linear Algebra Appl..

[7]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[8]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[9]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[10]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[11]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[12]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Tyrtyshnikov Kronecker-product approximations for some function-related matrices , 2004 .

[14]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[15]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[16]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[17]  Judith M. Ford,et al.  Combining Kronecker Product Approximation with Discrete Wavelet Transforms to Solve Dense, Function-Related Linear Systems , 2003, SIAM J. Sci. Comput..

[18]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[19]  E. Tyrtyshnikov,et al.  Tensor properties of multilevel Toeplitz and related matrices , 2006 .

[20]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .