Polyadic cyclic codes over a non-chain ring $\mathbb{F}_{q}[u, v]/\langle f(u), g(v), uv-vu\rangle$

Let $f(u)$ and $g(v)$ be any two polynomials of degree $k$ and $\ell$ respectively ($k$ and $\ell$ are not both $1$), which split into distinct linear factors over $\mathbb{F}_{q}$. Let $\mathcal{R}=\mathbb{F}_{q}[u,v]/\langle f(u),g(v),uv-vu\rangle$ be a finite commutative non-chain ring. In this paper, we study polyadic codes and their extensions over the ring $\mathcal{R}$. We give examples of some polyadic codes which are optimal with respect to Griesmer type bound for rings. A Gray map is defined from $\mathcal{R}^n \rightarrow \mathbb{F}^{k\ell n}_q$ which preserves duality. The Gray images of polyadic codes and their extensions over the ring $\mathcal{R}$ lead to construction of self-dual, isodual, self-orthogonal and complementary dual (LCD) codes over $\mathbb{F}_q$. Some examples are also given to illustrate this.

[1]  Mokshi Goyal,et al.  (1−2u3)-constacyclic codes and quadratic residue codes over Fp[u]/〈u4−u〉$\mathbb {F}_{p}[u]/\langle u^{4}-u\rangle $ , 2017, Cryptography and Communications.

[2]  Keisuke Shiromoto,et al.  A Griesmer Bound for Linear Codes Over Finite Quasi-Frobenius Rings , 2003, Discret. Appl. Math..

[4]  Vanessa R. Job,et al.  M-adic residue codes , 1992, IEEE Trans. Inf. Theory.

[5]  Mokshi Goyal,et al.  Duadic and triadic codes over a finite non-chain ring and their Gray images , 2018, Int. J. Inf. Coding Theory.

[6]  Bahattin Yildiz,et al.  Quadratic Residue Codes over F_p+vF_p and their Gray Images , 2013, ArXiv.

[7]  Madhu Raka,et al.  Polyadic codes of prime power length , 2007, Finite Fields Their Appl..

[8]  Habibul Islam,et al.  Skew cyclic and skew (α1 + uα2 + vα3 + uvα4)-constacyclic codes over Fq + uFq + vFq + uvFq , 2018, Int. J. Inf. Coding Theory.

[9]  I. Siap,et al.  Cyclic and constacyclic codes over a non-chain ring , 2014 .

[10]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[11]  B. Srinivasulu,et al.  On linear codes over a non-chain extension of F2 + uF2 , 2015, Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT).

[12]  Minjia Shi,et al.  Skew Cyclic codes over $\F_q+u\F_q+v\F_q+uv\F_q$ , 2015 .

[13]  Shixin Zhu,et al.  A family of constacyclic codes over F2 + uF2 + vF2 + uvF2 , 2012, J. Syst. Sci. Complex..

[14]  Mokshi Goyal,et al.  Duadic negacyclic codes over a finite non-chain ring and their Gray images , 2018, Discret. Math. Algorithms Appl..

[15]  Richard A. Brualdi,et al.  Polyadic codes , 1989, Discret. Appl. Math..

[16]  Bahattin Yildiz,et al.  Cyclic Isodual and Formally Self-dual Codes over F_q+vF_q , 2015 .

[17]  Michiel H. M. Smid Duadic codes , 1987, IEEE Trans. Inf. Theory.

[18]  Bahattin Yildiz,et al.  New extremal binary self-dual codes of length 68 from quadratic residue codes over 𝔽2 + u𝔽2 + u2𝔽2 , 2013, Finite Fields Their Appl..

[19]  Mohammad Ashraf,et al.  Quantum codes over Fp from cyclic codes over Fp[u, v]/〈u2 − 1, v3 − v, uv − vu〉 , 2018, Cryptography and Communications.

[20]  Suat Karadeniz,et al.  Cyclic codes over F2+uF2+vF2+uvF2 , 2011, Des. Codes Cryptogr..

[21]  Mokshi Goyal,et al.  Quadratic residue codes over the ring 𝔽p[u]/〈um−u〉$\mathbb {F}_{p}[u]/\langle u^{m}-u\rangle $ and their Gray images , 2018, Cryptography and Communications.