Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem

Ant inspired algorithms have gained popularity for use in multi-objective problem domains. One specific algorithm, Population-based ACO, which uses a population as well as the traditional pheromone matrix, has been shown to be effective at solving combinatorial multi-objective optimisation problems. This paper extends the population-based ACO algorithm with a crowding population replacement scheme to increase the search efficacy and efficiency. Results are shown for a suite of multi-objective travelling salesman problems of varying complexity

[1]  Daniel Angus Niching for ant colony optimization , 2006 .

[2]  Benjamín Barán,et al.  A Multiobjective Ant Colony System for Vehicle Routing Problem with Time Windows , 2003, Applied Informatics.

[3]  Martin Middendorf,et al.  Solving Multi-criteria Optimization Problems with Population-Based ACO , 2003, EMO.

[4]  Michael Guntsch Ant algorithms in stochastic and multi-criteria environments , 2004 .

[5]  T. Stützle,et al.  A Review on the Ant Colony Optimization Metaheuristic: Basis, Models and New Trends , 2002 .

[6]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[7]  Joshua D. Knowles A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[8]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[9]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[10]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[11]  Daniel Angus,et al.  Niching for Population-Based Ant Colony Optimization , 2006, 2006 Second IEEE International Conference on e-Science and Grid Computing (e-Science'06).

[12]  Martin Middendorf,et al.  A Population Based Approach for ACO , 2002, EvoWorkshops.

[13]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[14]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[15]  Francisco Herrera,et al.  A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP , 2007, Eur. J. Oper. Res..

[16]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[17]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[18]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[19]  Marco Dorigo,et al.  Ant algorithms and stigmergy , 2000, Future Gener. Comput. Syst..

[20]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.

[21]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[22]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..