Non-integrability of the generalized spring-pendulum problem

We investigate a generalization of the three-dimensional spring-pendulum system. The problem depends on two real parameters (k, a), where k is the Young modulus of the spring and a describes the nonlinearity of elastic forces. We show that this system is not integrable when k ≠ −a. We carefully investigated the case k = −a when the necessary condition for integrability given by the Morales-Ruiz–Ramis theory is satisfied. We discuss an application of the higher order variational equations for proving the non-integrability in this case.

[1]  M. Przybylska,et al.  Non-Integrability of the Problem of a Rigid Satellite in Gravitational and Magnetic Fields , 2003, math-ph/0308010.

[2]  Darryl D. Holm,et al.  Stepwise Precession of the Resonant Swinging Spring , 2001, SIAM J. Appl. Dyn. Syst..

[3]  Andrzej J. Maciejewski,et al.  Non-integrability of ABC flow , 2002 .

[4]  V. Kozlov,et al.  Symmetries, topology and resonances in Hamiltonian mechanics , 1996 .

[5]  M. Przybylska,et al.  Nonintegrability of the Suslov problem , 2004 .

[6]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[8]  I. Kaplansky An introduction to differential algebra , 1957 .

[9]  Juan José Morales Ruiz,et al.  Differential Galois Theory and Non-Integrability of Hamiltonian Systems , 1999 .

[10]  Rodolfo Cuerno,et al.  Deterministic chaos in the elastic pendulum: A simple laboratory for nonlinear dynamics , 1992 .

[11]  On algebraic solutions of Lamé's differential equation , 1981 .

[12]  Jerald J. Kovacic,et al.  An Algorithm for Solving Second Order Linear Homogeneous Differential Equations , 1986, J. Symb. Comput..

[13]  A. Maciejewski Non-Integrability of a Certain Problem of Rotational Motion of a Rigid Satellite , 2001 .

[14]  Vimal Singh,et al.  Perturbation methods , 1991 .

[15]  S. L. Ziglin Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I , 1982 .

[16]  J. Morales-Ruiz Kovalevskaya, Liapounov, Painlevé, Ziglin and the Differential Galois Theory , 2003 .

[17]  Juan José Morales Ruiz,et al.  Galosian Obstructions to Integrability of Hamiltonian Systems II , 2001 .

[18]  E. G. C. Poole,et al.  Introduction to the theory of linear differential equations , 1936 .

[19]  Peter Lynch,et al.  Resonant motions of the three-dimensional elastic pendulum , 2002 .

[20]  B. A. Aničin,et al.  The libration limits of the elastic pendulum , 1996 .

[21]  E. Breitenberger,et al.  The elastic pendulum: A nonlinear paradigm , 1981 .

[22]  A. Vitt,et al.  Oscillations of an elastic pendulum as an example of the oscillations of two parametrically coupled linear systems , 1999 .

[23]  H. N. Núñez-Yépez,et al.  Onset of chaos in an extensible pendulum , 1990 .

[24]  J. H. Heinbockel,et al.  Resonant oscillations of an extensible pendulum , 1963 .

[25]  A. W. Sáenz Nonintegrability of the Dragt-Finn model of magnetic confinement: a Galoisian-group approach , 2000 .

[26]  P. Lynch Resonant Rossby wave triads and the swinging spring , 2003 .