Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

[1]  Y. H. Wang,et al.  Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure , 2017 .

[2]  K. An,et al.  Twinning-mediated work hardening and texture evolution in CrCoFeMnNi high entropy alloys at cryogenic temperature , 2017 .

[3]  G. M. Stocks,et al.  Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys , 2017 .

[4]  Hongquan Song,et al.  Local lattice distortion in high-entropy alloys , 2017 .

[5]  T. Nieh,et al.  Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys , 2017 .

[6]  W. J. Weber,et al.  Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy. , 2017, Physical review letters.

[7]  Yang Ren,et al.  Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction , 2017 .

[8]  Howard J. Stone,et al.  An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy , 2017 .

[9]  I. M. Robertson,et al.  Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys , 2016, Nature Communications.

[10]  Zikang Tang,et al.  Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys , 2016 .

[11]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[12]  P. Bardziński,et al.  Mechanical properties and structure of rapidly solidified bulk Fe89 − xHf4Ta1Cu1Gd1SixB4 (x = 0–15) and Fe74Hf4Ta1Cu1Gd1LaySi15 − yB4 (y = 7) alloys , 2016 .

[13]  Y. Champion,et al.  From high entropy alloys to diluted multi-component alloys: Range of existence of a solid-solution , 2016 .

[14]  Jun Qu,et al.  Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys , 2016 .

[15]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[16]  Yong Zhang,et al.  A hexagonal close-packed high-entropy alloy: The effect of entropy , 2016 .

[17]  G. M. Stocks,et al.  Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys , 2015, Nature Communications.

[18]  H. Bei,et al.  Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys , 2015 .

[19]  W. Qiu,et al.  Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements , 2015 .

[20]  Jien-Wei Yeh,et al.  Physical Metallurgy of High-Entropy Alloys , 2015 .

[21]  G. M. Stocks,et al.  Local Electronic Effects and Irradiation Resistance in High-Entropy Alloys , 2015 .

[22]  C. T. Liu,et al.  A geometric model for intrinsic residual strain and phase stability in high entropy alloys , 2015 .

[23]  H. Bei,et al.  Structural rejuvenation in bulk metallic glasses , 2015 .

[24]  P. Liaw,et al.  Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy , 2015, Nature Communications.

[25]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[26]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[27]  Ralph Spolenak,et al.  Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy , 2014 .

[28]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[29]  Z. Witczak,et al.  Residual elastic strain induced by equal channel angular pressing on bulk metallic glasses , 2013 .

[30]  Takeshi Egami,et al.  Local Atomic Structure of a High-Entropy Alloy: An X-Ray and Neutron Scattering Study , 2013, Metallurgical and Materials Transactions A.

[31]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[32]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[33]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[34]  J. Almer,et al.  Elastic heterogeneity in metallic glasses. , 2010, Physical review letters.

[35]  P. Liaw,et al.  Solid‐Solution Phase Formation Rules for Multi‐component Alloys , 2008 .

[36]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  Shou-Yi Chang,et al.  Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements , 2007 .

[38]  T. Egami,et al.  Observation of structural anisotropy in metallic glasses induced by mechanical deformation , 2007 .

[39]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[40]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[41]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[42]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[43]  S. K. Wong,et al.  The effect of boron on the microstructure and mechanical behavior of an Ni–19Si–3Nb based alloy , 2000 .

[44]  A. P. Hammersley,et al.  Calibration and correction of spatial distortions in 2D detector systems , 1994 .

[45]  Suzuki,et al.  Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. , 1987, Physical review. B, Condensed matter.

[46]  Tomoo Suzuki,et al.  Solid Solution Hardening of Nickel —Role of Transition Metal and B-subgroup Solutes— , 1986 .