Effective tip radius in electrostatic force microscopy

A method to determine the effective electrostatic tip radius of arbitrarily shaped conducting tips in atomic force microscopy is presented. The method is based on the finding that for conductive samples, the electrostatic force can be separated into two contributions: one from a constant background that depends only on the macroscopic shape of the tip (cone or pyramid and cantilever), and another that depends only on the radius of curvature of the tip apex. Based on a simple theoretical expression derived from the generalized image charge method, we show that the tip radius can be directly determined from experimental force-distance characteristics. For irregular tip shapes, we show that the measured tip radius is the average of two principal curvatures, in agreement with tip shape images obtained by scanning electron microscopy.

[1]  P. Girard,et al.  ELECTROSTATIC FORCES ACTING ON THE TIP IN ATOMIC FORCE MICROSCOPY : MODELIZATION AND COMPARISON WITH ANALYTIC EXPRESSIONS , 1997 .

[2]  J. Sáenz,et al.  Electrostatic forces between sharp tips and metallic and dielectric samples , 2001 .

[3]  J. E. Stern,et al.  Contact electrification using force microscopy. , 1989, Physical review letters.

[4]  P. King,et al.  Scanning capacitance microscopy , 1988 .

[5]  M. Spencer,et al.  Cantilever effects on the measurement of electrostatic potentials by scanning Kelvin probe microscopy , 2001 .

[6]  A. M. Baró,et al.  Resolution enhancement and improved data interpretation in electrostatic force microscopy , 2001 .

[7]  Louis E. Brus,et al.  Quantitative Noncontact Electrostatic Force Imaging of Nanocrystal Polarizability , 2003 .

[8]  N. Lin,et al.  A method for in situ characterization of tip shape in ac-mode atomic force microscopy using electrostatic interaction , 1998 .

[9]  D. Abraham,et al.  High resolution atomic force microscopy potentiometry , 1991 .

[10]  M. Salmeron,et al.  Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution , 1995, Science.

[11]  Morton Rosoff,et al.  Nano-Surface Chemistry , 2007 .

[12]  J. Sáenz,et al.  Cantilever effects on electrostatic force gradient microscopy , 2004 .

[13]  R. Carminati,et al.  Theory of Electrostatic Probe Microscopy: A Simple Perturbative Approach , 2000 .

[14]  A M Baró,et al.  Contactless experiments on individual DNA molecules show no evidence for molecular wire behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  P. Girard,et al.  Observations of self-organized InAs nanoislands on GaAs (0 0 1) surface by electrostatic force microscopy , 2002 .

[16]  Xudong Xiao,et al.  Scanning polarization force microscopy: A technique for imaging liquids and weakly adsorbed layers , 1995 .

[17]  Francois Rieutord,et al.  Electrostatic forces in atomic force microscopy , 2002 .

[18]  J. E. MacDonald,et al.  Quantitative electrostatic force microscopy-phase measurements , 2004 .

[19]  J. Villarrubia Morphological estimation of tip geometry for scanned probe microscopy , 1994 .

[20]  S. Rishton,et al.  Scanning capacitance microscopy on a 25 nm scale , 1989 .

[21]  A. M. Baró,et al.  Electrostatic and contact forces in force microscopy , 1991 .

[22]  N. McIntyre,et al.  A Simple and Effective Method of Evaluating Atomic Force Microscopy Tip Performance , 2001 .

[23]  C. Frisbie,et al.  Rupture of Hydrophobic Microcontacts in Water: Correlation of Pull-Off Force with AFM Tip Radius , 2000 .

[24]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[25]  M. Scheffler,et al.  Adatom kinetics on and below the surface: the existence of a new diffusion channel. , 2003, Physical review letters.