Adaptive metrics in the nearest neighbours method

[1]  Niklaus Wirth,et al.  Algorithms + Data Structures = Programs , 1976 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[4]  Michael E. Taylor,et al.  Propagation of singularities , 1991 .

[5]  William H. Press,et al.  Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes , 1992 .

[6]  D. Murray Forecasting a chaotic time series using an improved metric for embedding space , 1993 .

[7]  Francis J Mulhern,et al.  A nearest neighbor model for forecasting market response , 1994 .

[8]  N. Tanaka,et al.  An optimal metric for predicting chaotic time series , 1995 .

[9]  García,et al.  Local optimal metrics and nonlinear modeling of chaotic time series. , 1996, Physical review letters.

[10]  Dimitris Kugiumtzis,et al.  Assessing different norms in nonlinear analysis of noisy time series , 1997 .

[11]  L. Cao Practical method for determining the minimum embedding dimension of a scalar time series , 1997 .

[12]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[13]  P. Young,et al.  Dynamic harmonic regression. , 1999 .

[14]  Julián Andrada-Félix,et al.  Exchange-rate forecasts with simultaneous nearest-neighbour methods: evidence from the EMS , 1999 .

[15]  V. Pérez-Muñnuzuri,et al.  Application of nonlinear forecasting techniques for meteorological modeling , 2000 .

[16]  James McNames,et al.  A Nearest Trajectory Strategy for Time Series Prediction , 2000 .

[17]  B. Brabec,et al.  A nearest-neighbor model for regional avalanche forecasting , 2001, Annals of Glaciology.

[18]  M D Prokhorov,et al.  Reconstruction of time-delay systems from chaotic time series. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[20]  J. Timmer,et al.  Fitting parameters in partial differential equations from partially observed noisy data , 2002 .

[21]  H. Voss,et al.  Parameter estimation in nonlinear delayed feedback systems from noisy data , 2002 .

[22]  Bernd Jähne,et al.  Mixed OLS-TLS for the Estimation of Dynamic Processes with a Linear Source Term , 2002, DAGM-Symposium.

[23]  C. Garbe,et al.  Local models for dynamic processes in image sequences , 2002 .

[24]  Rudolf Mester,et al.  ON THE MATHEMATICAL STRUCTURE OF DIRECTION AND MOTION ESTIMATION , 2002 .

[25]  Hagen Spies,et al.  Dense Parameter Fields from Total Least Squares , 2002, DAGM-Symposium.

[26]  R. Küsters,et al.  Simultaneous estimation of local and global parameters in image sequences , 2002 .

[27]  G. Keller,et al.  Entropy of interval maps via permutations , 2002 .

[28]  H. Scharr,et al.  A linear model for simultaneous estimation of 3D motion and depth , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[29]  J. Timmer,et al.  Asymptotic scaling laws for precision of parameter estimates in dynamical systems , 2003 .

[30]  Rudolf Mester,et al.  A New View at Differential and Tensor-Based Motion Estimation Schemes , 2003, DAGM-Symposium.

[31]  Hanno Scharr,et al.  Image statistics and anisotropic diffusion , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  D. Assessing different norms in nonlinear analysis of noisy time series , 2003 .

[33]  W. Panzer,et al.  An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography. , 2003, Physics in medicine and biology.

[34]  Erhardt Barth,et al.  Categorization of Transparent-Motion Patterns Using the Projective Plane , 2003, SNPD.

[35]  Andreas Martin,et al.  Exact and fast numerical algorithms for the stochastic wave equation , 2003, Int. J. Comput. Math..

[36]  H. Scharr,et al.  Simultaneous Estimation of Motion and Disparity : Comparison of 2-, 3-and 5-Camera Setups , 2003 .

[37]  G. Winkler,et al.  Numerical solution of boundary value problems for stochastic differential equations on the basis of the Gibbs sampler , 2003 .

[38]  Hagen Spies,et al.  Estimation of complex motion from thermographic image sequences , 2003, SPIE Defense + Commercial Sensing.

[39]  U. Clarenz,et al.  Towards fast non-rigid registration , 2003 .

[40]  Bernd Jähne,et al.  Towards objective performance analysis for estimation of complex motion: analytic motion modeling, filter optimization, and test sequences , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[41]  Rudolf Mester The generalization, optimization, and information-theoretic justification of filter-based and autocovariance-based motion estimation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[42]  Til Aach,et al.  Estimation of multiple motions: regularization and performance evaluation , 2003, IS&T/SPIE Electronic Imaging.

[43]  Til Aach,et al.  Linear and regularized solutions for multiple motions , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[44]  G. Winkler,et al.  Exact numerical algorithms for linear stochastic wave equation and stochastic Klein-Gordon equation , 2003 .

[45]  D. Lorenz Variational Denoising in Besov Spaces and Interpolation of Hard and Soft Wavelet Shrinkage , 2003 .

[46]  U. Parlitz,et al.  Mathematical methods for forecasting bank transaction data , 2003 .

[47]  H. Voss,et al.  Non-parametric identification of non-linear oscillating systems , 2003 .

[48]  B. Øksendal,et al.  Small Ball Asymptotics for the Stochastic Wave Equation ∗ , 2003 .

[49]  Michael Felsberg,et al.  Noise Adaptive Channel Smoothing of Low-Dose Images , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[50]  Karsten Keller,et al.  Symbolic Analysis of High-Dimensional Time Series , 2003, Int. J. Bifurc. Chaos.

[51]  Visualization and detection of coupling in time series by order recurrence plots , 2004 .

[52]  Bernd Jähne,et al.  Estimation of Surface Flow and Net Heat Flux from Infrared Image Sequences , 2003, Journal of Mathematical Imaging and Vision.

[53]  J. Timmer,et al.  Data-driven optimal filtering for phase and frequency of noisy oscillations: Application to vortex flow metering. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Til Aach,et al.  Estimation of multiple orientations in multidimensional signals , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[55]  S. Rao On multiple regression models with nonstationary correlated errors , 2004 .

[56]  E. Barth,et al.  Multiple-Motion-Estimation by Block-matching Using Markov Random Fields , 2004, ACIS Int. J. Comput. Inf. Sci..

[57]  H. Thielemann Bounds for smoothness of refinable functions , 2004 .

[58]  Karsten Koch Interpolating Scaling Vectors: Application to Signal and Image Denoising , 2004 .

[59]  Katharina Wittfeld,et al.  Distances of Time Series Components by Means of Symbolic Dynamics , 2004, Int. J. Bifurc. Chaos.

[60]  Bernd Jähne,et al.  A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air‐sea heat and gas exchange , 2004 .

[61]  Henning Thielemann Audio Processing using Haskell , 2004 .

[62]  Rudolf Mester,et al.  Wiener-Optimized Discrete Filters for Differential Motion Estimation , 2004, IWCM.

[63]  Gabriele Steidl,et al.  Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere , 2004, Adv. Comput. Math..

[64]  Martin Rumpf,et al.  Axioms and variational problems in surface parameterization , 2004, Comput. Aided Geom. Des..

[65]  Robert Strzodka,et al.  Real-time motion estimation and visualization on graphics cards , 2004, IEEE Visualization 2004.

[66]  Til Aach,et al.  Estimation of Multiple Orientations at Corners and Junctions , 2004, DAGM-Symposium.

[67]  Rudolf Mester,et al.  Unbiased Errors-In-Variables Estimation Using Generalized Eigensystem Analysis , 2004, ECCV Workshop SMVP.

[68]  Hanno Scharr,et al.  Towards a Multi-camera Generalization of Brightness Constancy , 2004, IWCM.

[69]  M. Droske,et al.  A level set formulation for Willmore flow , 2004 .

[70]  Jürgen Kurths,et al.  Surrogate-Based Hypothesis Test without Surrogates , 2004, Int. J. Bifurc. Chaos.

[71]  Hanno Scharr,et al.  Optimal Filters for Extended Optical Flow , 2004, IWCM.

[72]  Ursula Klingmüller,et al.  Modeling the Nonlinear Dynamics of Cellular Signal Transduction , 2004, Int. J. Bifurc. Chaos.

[73]  H. Voss,et al.  Phase synchronization from noisy univariate signals. , 2004, Physical review letters.

[74]  Rudolf Mester,et al.  A statistical extension of normalized convolution and its usage for image interpolation and filtering , 2004, 2004 12th European Signal Processing Conference.

[75]  Martin Rumpf,et al.  Flow field clustering via algebraic multigrid , 2004, IEEE Visualization 2004.

[76]  E. Barth,et al.  Analysing superimposed oriented patterns , 2004, 6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004..

[77]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[78]  Chi K. Tse,et al.  Optimal embedding parameters: a modelling paradigm , 2004 .

[79]  M. Rumpf,et al.  Morphological image sequence processing , 2004 .

[80]  G. Teschke,et al.  Regularization of Sobolev Embedding Operators and Applications Part II , 2004 .

[81]  Til Aach,et al.  Estimation of multiple local orientations in image signals , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[82]  R. Ramlau,et al.  Regularization of Mellin-type inverse problems with an application to oil engineering☆ , 2004 .

[83]  H. Kantz,et al.  FREQUENCY DOMAIN CONDITIONS FOR THE EXISTENCE OF ALMOST PERIODIC SOLUTIONS IN EVOLUTIONARY VARIATIONAL INEQUALITIES , 2004 .

[84]  Miquel Sànchez-Marrè,et al.  Nearest-Neighbours for Time Series , 2004, Applied Intelligence.

[85]  A. Schulze-Bonhage,et al.  Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic , 2004 .

[86]  Jens Timmer,et al.  Identification of Rate Constants and nonobservable Absorption Spectra in Nonlinear Biochemical Reaction Dynamics , 2004, Int. J. Bifurc. Chaos.

[87]  J. Polzehl,et al.  Local likelihood modeling by adaptive weights smoothing , 2004 .

[88]  Martin Rumpf,et al.  Image Registration by a Regularized Gradient Flow. A Streaming Implementation in DX9 Graphics Hardware , 2004, Computing.

[89]  K. Bredies,et al.  Mathematical concepts of multiscale smoothing , 2005 .

[90]  H. Scharr Optimal Derivative Filter Families for Transparent Motion Estimation , 2005 .

[91]  G. Teschke Multi-Frames in Thresholding Iterations for Nonlinear Operator Equations with Mixed Sparsity Constraints , 2005 .

[92]  C. Bandt Ordinal time series analysis , 2005 .

[93]  M. S. Diallo,et al.  Modeling of Wave Dispersion Using Continuous Wavelet Transforms , 2005 .

[94]  J. Franke,et al.  Bernstein inequality for strongly mixing spatial random processes , 2005 .

[95]  G. Winkler,et al.  An Elementary Rigorous Introduction to Exact Sampling , 2005 .

[96]  Jürgen Kurths,et al.  Quantification of Order Patterns Recurrence Plots of Event Related Potentials , 2005 .

[97]  Hanno Scharr,et al.  Estimation of transparent motions with physical models for additional brightness variation , 2005, 2005 13th European Signal Processing Conference.

[98]  G. Teschke,et al.  Tikhonov replacement functionals for iteratively solving nonlinear operator equations , 2005 .

[99]  M. Winterhalder,et al.  Mixing properties of the Rössler system and consequences for coherence and synchronization analysis. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Karsten Koch,et al.  Nonseparable Orthonormal Interpolating Scaling Vectors , 2005 .

[101]  Kai Krajsek Steerable filters in motion estimation , 2005 .

[102]  Karsten Koch Interpolating Scaling Vectors , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[103]  Matthias Mh,et al.  Derivation of optimal equilibration transformations for general covariance tensors of random matrices , 2005 .

[104]  Frank Scherbaum,et al.  Instantaneous polarization attributes in the time–frequency domain and wavefield separation , 2005 .

[105]  Rudolf Mester,et al.  A Fast Algorithm for Statistically Optimized Orientation Estimation , 2005, DAGM-Symposium.

[106]  G. Winkler,et al.  Parsimonious segmentation of time series by Potts models , 2005 .

[107]  Til Aach,et al.  Spatial and spectral analysis of occluded motions , 2005, Signal Process. Image Commun..

[108]  F. Scherbaum,et al.  Characterization of dispersive surface waves using continuous wavelet transforms , 2005 .

[109]  Rudolf Mester,et al.  Signal and Noise Adapted Filters for Differential Motion Estimation , 2005, DAGM-Symposium.

[110]  K. Bredies,et al.  Equivalence of a Generalized Conditional Gradient Method and the Method of Surrogate Functionals , 2005 .

[111]  Dirk Kohler,et al.  A comparison of denoising methods for one dimensional time series , 2005 .

[112]  R. Dahlhaus,et al.  Semiparametric estimation by model selection for locally stationary processes , 2006 .

[113]  M. Muhlich,et al.  Subspace Estimation with Uncertain and Correlated Data , 2006 .

[114]  Thomas Brox,et al.  Diffusion Filters and Wavelets: What Can They Learn from Each Other? , 2006, Handbook of Mathematical Models in Computer Vision.

[115]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings I , 2006, J. Complex..

[116]  Marc Droske,et al.  A Mumford-Shah Level-Set Approach for Geometric Image Registration , 2006, SIAM J. Appl. Math..

[117]  G. Steidl,et al.  Robust local approximation of scattered data , 2006 .

[118]  P. Young,et al.  Modulated cycles, an approach to modelling periodic components from rapidly sampled data , 2006 .

[119]  P. Mrázek,et al.  ON ROBUST ESTIMATION AND SMOOTHING WITH SPATIAL AND TONAL KERNELS , 2006 .

[120]  Martin Rumpf,et al.  Computational Methods for Nonlinear Image Registration , 2006 .

[121]  J. Kurths,et al.  Sensitivity and specificity of coherence and phase synchronization analysis , 2006 .

[122]  T. Sapatinas,et al.  A Haar-Fisz technique for locally stationary volatility estimation , 2006 .

[123]  S. Rao On some nonstationary, nonlinear random processes and their stationary approximations , 2006 .

[124]  R. Dahlhaus,et al.  Statistical inference for time-varying ARCH processes , 2006, math/0607799.

[125]  Jens Timmer,et al.  Direct or indirect? Graphical models for neural oscillators , 2004, Journal of Physiology-Paris.

[126]  D. Lorenz,et al.  Solving variational problems in image processing via projections – a common view on TV denoising and wavelet shrinkage , 2007 .

[127]  Chstoph Bandt,et al.  Order Patterns in Time Series , 2007 .

[128]  J. Weickert,et al.  Energy-Based Image Simplification with Nonlocal Data and Smoothness Terms , 2007 .

[129]  R. Dahlhaus,et al.  A recursive online algorithm for the estimation of time-varying ARCH parameters , 2007, 0708.4081.

[130]  F. Scherbaum,et al.  Polarization analysis in the wavelet domain based on the adaptive covariance method , 2007 .

[131]  G. Teschke Multi-frame representations in linear inverse problems with mixed multi-constraints , 2007 .

[132]  M. Fornasier,et al.  Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .

[133]  Joachim Weickert,et al.  From two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage , 2007, J. Vis. Commun. Image Represent..

[134]  M. Fornasier,et al.  Generalized coorbit theory, Banach frames, and the relation to α‐modulation spaces , 2008 .

[135]  S. Rao Statistical analysis of a spatio‐temporal model with location‐dependent parameters and a test for spatial stationarity , 2008 .