Lensing observables: Massless dyonic vis-à-vis Ellis wormholes
暂无分享,去创建一个
[1] A. Banerjee,et al. Deflection of light by black holes and massless wormholes in massive gravity , 2017, 1712.10175.
[2] A. Banerjee,et al. Semiclassical gravitational effects on the gravitational lensing in the spacetime of topological defects , 2017, 1709.00227.
[3] H. Arakida. Light deflection and Gauss–Bonnet theorem: definition of total deflection angle and its applications , 2017, 1708.04011.
[4] Prieslei Goulart. Phantom wormholes in Einstein–Maxwell-dilaton theory , 2017, 1708.00935.
[5] A. Banerjee,et al. Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory , 2017, 1707.01416.
[6] K. K. Nandi,et al. Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole? , 2016, 1611.03479.
[7] A. Potapov,et al. Gravitational Microlensing by Ellis Wormhole: Second Order Effects , 2016 .
[8] A. Potapov,et al. Stability and instability of Ellis and phantom wormholes: Are there ghosts? , 2016, 1606.04356.
[9] H. Asada,et al. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem , 2016, 1604.08308.
[10] A. Potapov,et al. On the generalized wormhole in the Eddington-inspired Born–Infeld gravity , 2015, 1512.01451.
[11] T. Harko,et al. Gravitational, lensing and stability properties of Bose-Einstein condensate dark matter halos , 2015, 1505.00944.
[12] H. Asada,et al. Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field , 2014, 1402.6823.
[13] C. Cattani,et al. Correct light deflection in Weyl conformal gravity , 2013, 1303.7438.
[14] B. Schaefer,et al. Weak gravitational lensing of intrinsically aligned galaxies , 2013, 1302.2607.
[15] I. Novikov,et al. Stability analysis of a Morris-Thorne-Bronnikov-Ellis wormhole with pressure , 2012 .
[16] H. Asada,et al. ASTROMETRIC IMAGE CENTROID DISPLACEMENTS DUE TO GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE , 2011, 1107.5374.
[17] F. Abe. GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE , 2010, 1009.6084.
[18] A. Potapov,et al. BENDING OF LIGHT IN ELLIS WORMHOLE GEOMETRY , 2010 .
[19] A. Petters,et al. Light’s bending angle due to black holes: from the photon sphere to infinity , 2006, gr-qc/0611086.
[20] K. K. Nandi,et al. Testing gravity at the second post-Newtonian level through gravitational deflection of massive particles , 2006, gr-qc/0610089.
[21] C. Keeton,et al. Formalism for testing theories of gravity using lensing by compact objects. III. Braneworld gravity , 2006, gr-qc/0603061.
[22] Yuan-zhong Zhang,et al. Gravitational lensing by wormholes , 2006, gr-qc/0602062.
[23] C. Keeton,et al. Formalism for testing theories of gravity using lensing by compact objects. II. Probing post-post-Newtonian metrics , 2006, gr-qc/0601053.
[24] C. Keeton,et al. Formalism for testing theories of gravity using lensing by compact objects: Static, spherically symmetric case , 2005, gr-qc/0511019.
[25] V. Perlick. Exact gravitational lens equation in spherically symmetric and static spacetimes , 2003, gr-qc/0307072.
[26] A. Bhadra. Gravitational lensing by a charged black hole of string theory , 2003, gr-qc/0306016.
[27] V. Bozza. Gravitational lensing in the strong field limit , 2002, gr-qc/0208075.
[28] C. Armendariz-Picon,et al. On a class of stable, traversable Lorentzian wormholes in classical general relativity , 2002, gr-qc/0201027.
[29] G. Clément,et al. Geometrical optics in the Ellis geometry , 1984 .
[30] M. Glasser. Erratum: The evaluation of lattice sums. II. Number theoretic approach , 1974 .
[31] Matt Visser,et al. Lorentzian Wormholes: From Einstein to Hawking , 1995 .
[32] H. G. Ellis. Ether flow through a drainhole - a particle model in general relativity , 1973 .