Lensing observables: Massless dyonic vis-à-vis Ellis wormholes

Stable massless wormholes are theoretically interesting in their own right as well as for astrophysical applications, especially as galactic halo objects. Therefore, the study of gravitational lensing observables for such objects is of importance, and we do here by applying the parametric post-Newtonian method of Keeton and Petters to massless dyonic charged wormholes of the Einstein-Maxwell-Dilaton field theory and to the massless Ellis wormhole of the Einstein minimally coupled scalar field theory. The paper exemplifies how the lensing signatures of two different solutions belonging to two different theories could be qualitatively similar from the observational point of view. Quantitative differences appear depending on the parameter values. Surprisingly, there appears an unexpected divergence in the correction to differential time delay, which seems to call for a review of its original derivation.

[1]  A. Banerjee,et al.  Deflection of light by black holes and massless wormholes in massive gravity , 2017, 1712.10175.

[2]  A. Banerjee,et al.  Semiclassical gravitational effects on the gravitational lensing in the spacetime of topological defects , 2017, 1709.00227.

[3]  H. Arakida Light deflection and Gauss–Bonnet theorem: definition of total deflection angle and its applications , 2017, 1708.04011.

[4]  Prieslei Goulart Phantom wormholes in Einstein–Maxwell-dilaton theory , 2017, 1708.00935.

[5]  A. Banerjee,et al.  Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory , 2017, 1707.01416.

[6]  K. K. Nandi,et al.  Ring-down gravitational waves and lensing observables: How far can a wormhole mimic those of a black hole? , 2016, 1611.03479.

[7]  A. Potapov,et al.  Gravitational Microlensing by Ellis Wormhole: Second Order Effects , 2016 .

[8]  A. Potapov,et al.  Stability and instability of Ellis and phantom wormholes: Are there ghosts? , 2016, 1606.04356.

[9]  H. Asada,et al.  Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem , 2016, 1604.08308.

[10]  A. Potapov,et al.  On the generalized wormhole in the Eddington-inspired Born–Infeld gravity , 2015, 1512.01451.

[11]  T. Harko,et al.  Gravitational, lensing and stability properties of Bose-Einstein condensate dark matter halos , 2015, 1505.00944.

[12]  H. Asada,et al.  Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field , 2014, 1402.6823.

[13]  C. Cattani,et al.  Correct light deflection in Weyl conformal gravity , 2013, 1303.7438.

[14]  B. Schaefer,et al.  Weak gravitational lensing of intrinsically aligned galaxies , 2013, 1302.2607.

[15]  I. Novikov,et al.  Stability analysis of a Morris-Thorne-Bronnikov-Ellis wormhole with pressure , 2012 .

[16]  H. Asada,et al.  ASTROMETRIC IMAGE CENTROID DISPLACEMENTS DUE TO GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE , 2011, 1107.5374.

[17]  F. Abe GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE , 2010, 1009.6084.

[18]  A. Potapov,et al.  BENDING OF LIGHT IN ELLIS WORMHOLE GEOMETRY , 2010 .

[19]  A. Petters,et al.  Light’s bending angle due to black holes: from the photon sphere to infinity , 2006, gr-qc/0611086.

[20]  K. K. Nandi,et al.  Testing gravity at the second post-Newtonian level through gravitational deflection of massive particles , 2006, gr-qc/0610089.

[21]  C. Keeton,et al.  Formalism for testing theories of gravity using lensing by compact objects. III. Braneworld gravity , 2006, gr-qc/0603061.

[22]  Yuan-zhong Zhang,et al.  Gravitational lensing by wormholes , 2006, gr-qc/0602062.

[23]  C. Keeton,et al.  Formalism for testing theories of gravity using lensing by compact objects. II. Probing post-post-Newtonian metrics , 2006, gr-qc/0601053.

[24]  C. Keeton,et al.  Formalism for testing theories of gravity using lensing by compact objects: Static, spherically symmetric case , 2005, gr-qc/0511019.

[25]  V. Perlick Exact gravitational lens equation in spherically symmetric and static spacetimes , 2003, gr-qc/0307072.

[26]  A. Bhadra Gravitational lensing by a charged black hole of string theory , 2003, gr-qc/0306016.

[27]  V. Bozza Gravitational lensing in the strong field limit , 2002, gr-qc/0208075.

[28]  C. Armendariz-Picon,et al.  On a class of stable, traversable Lorentzian wormholes in classical general relativity , 2002, gr-qc/0201027.

[29]  G. Clément,et al.  Geometrical optics in the Ellis geometry , 1984 .

[30]  M. Glasser Erratum: The evaluation of lattice sums. II. Number theoretic approach , 1974 .

[31]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[32]  H. G. Ellis Ether flow through a drainhole - a particle model in general relativity , 1973 .