Plasma Neuro fi lament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration

Objective We tested the hypothesis that plasma neuro fi lament light chain (NfL) identi fi es asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD) – causing mutations at risk of disease progression. Methods Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72 , GRN , and MAPT mutation carriers and noncarriers from the same families were classi fi ed by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer ’ s Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-e ff ect models related NfL to clinical variables.

[1]  G. Frisoni,et al.  Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[2]  David T. Jones,et al.  Utility of the global CDR® plus NACC FTLD rating and development of scoring rules: Data from the ARTFL/LEFFTDS Consortium , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[3]  A. Toga,et al.  Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[4]  David T. Jones,et al.  Comparison of sporadic and familial behavioral variant frontotemporal dementia (FTD) in a North American cohort , 2020, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[5]  David T. Jones,et al.  The longitudinal evaluation of familial frontotemporal dementia subjects protocol: Framework and methodology , 2019, Alzheimer's & Dementia.

[6]  David T. Jones,et al.  Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration , 2019, Alzheimer's & Dementia.

[7]  A. Ludolph,et al.  CNS phenotype in X linked Charcot- Marie-Tooth disease , 2018, Journal of Neurology Neurosurgery & Psychiatry.

[8]  D. Stuss,et al.  Therapeutic trial design for frontotemporal dementia and related disorders , 2018, Journal of Neurology, Neurosurgery, and Psychiatry.

[9]  A. Fagan,et al.  Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory , 2018, Annals of clinical and translational neurology.

[10]  K. Blennow,et al.  Biomarkers for Alzheimer's disease: current status and prospects for the future , 2018, Journal of internal medicine.

[11]  F. Ferris,et al.  Report From the NEI/FDA Endpoints Workshop on Age-Related Macular Degeneration and Inherited Retinal Diseases , 2017, Investigative ophthalmology & visual science.

[12]  Yong Ji,et al.  The effects of behavioral and psychological symptoms on caregiver burden in frontotemporal dementia, Lewy body dementia, and Alzheimer's disease: clinical experience in China , 2017, Aging & mental health.

[13]  Anders M. Dale,et al.  Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia , 2017, Acta Neuropathologica.

[14]  M. Jorge Cardoso,et al.  Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia , 2016, Neurology.

[15]  S. Ourselin,et al.  Neurofilament light chain: a biomarker for genetic frontotemporal dementia , 2016, Annals of clinical and translational neurology.

[16]  Veronica Redaelli,et al.  Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis , 2015, The Lancet Neurology.

[17]  L. Grinberg,et al.  Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration , 2014, Annals of neurology.

[18]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[19]  Bruce L. Miller,et al.  Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer's disease and behavioral variant frontotemporal dementia , 2011, Neuropsychologia.

[20]  M. Hutton,et al.  The genetics of frontotemporal dementia. , 2007, Neurologic clinics.

[21]  S. Targum,et al.  The clinical global impressions scale: applying a research tool in clinical practice. , 2007, Psychiatry (Edgmont (Pa. : Township)).

[22]  John Ashburner,et al.  A tensor based morphometry study of longitudinal gray matter contraction in FTD , 2007, NeuroImage.

[23]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[24]  K. Blennow,et al.  Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD , 2000, Neurology.

[25]  Bonnet Am [The Unified Parkinson's Disease Rating Scale]. , 2000 .

[26]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[27]  C. Wikkelsø,et al.  Patients with Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases Have Increased Levels of Neurofilament Protein in CSF , 1996, Journal of neurochemistry.

[28]  T. Kurosaki,et al.  Measurement of functional activities in older adults in the community. , 1982, Journal of gerontology.

[29]  R. Reitan Validity of the Trail Making Test as an Indicator of Organic Brain Damage , 1958 .

[30]  A. Minagar Axonal Damage in Relapsing Multiple Sclerosis is Markedly Reduced by Natalizumab , 2011 .

[31]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[32]  Z. Schwab,et al.  Projection technique for evaluating surgery in Parkinson’s disease , 1969 .