Web-based services for drug design and discovery

Introduction: Reviews of the development of drug discovery through the 20th century recognised the importance of chemistry and increasingly bioinformatics, but had relatively little to say about the importance of computing and networked computing in particular. However, the design and discovery of new drugs is arguably the most significant single application of bioinformatics and cheminformatics to have benefitted from the increases in the range and power of the computational techniques since the emergence of the World Wide Web, commonly now referred to as simply ‘the Web’. Web services have enabled researchers to access shared resources and to deploy standardized calculations in their search for new drugs. Areas covered: This article first considers the fundamental principles of Web services and workflows, and then explores the facilities and resources that have evolved to meet the specific needs of chem- and bio-informatics. This strategy leads to a more detailed examination of the basic components that characterise molecules and the essential predictive techniques, followed by a discussion of the emerging networked services that transcend the basic provisions, and the growing trend towards embracing modern techniques, in particular the Semantic Web. Expert opinion: In the opinion of the authors, the issues that require community action are: increasing the amount of chemical data available for open access; validating the data as provided; and developing more efficient links between the worlds of cheminformatics and bioinformatics. The goal is to create ever better drug design services.

[1]  Jonathan W. Essex,et al.  A Computer-Aided Drug Discovery System for Chemistry Teaching , 2006, J. Chem. Inf. Model..

[2]  Jeremy G Frey,et al.  The value of the Semantic Web in the laboratory. , 2009, Drug discovery today.

[3]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[4]  Rajarshi Guha Flexible Web Service Infrastructure for the Development and Deployment of Predictive Models , 2008, J. Chem. Inf. Model..

[5]  Igor V Tetko,et al.  The WWW as a tool to obtain molecular parameters. , 2003, Mini reviews in medicinal chemistry.

[6]  Paul M. Selzer,et al.  Web-based cheminformatics tools deployed via corporate Intranets , 2004 .

[7]  Carole A. Goble,et al.  BioCatalogue: a universal catalogue of web services for the life sciences , 2010, Nucleic Acids Res..

[8]  Peter Ertl,et al.  Molecular structure input on the web , 2010, J. Cheminformatics.

[9]  Jonathan W. Essex,et al.  BioSimGrid: Grid-enabled biomolecular simulation data storage and analysis , 2006, Future Gener. Comput. Syst..

[10]  Martin Serrano,et al.  Nucleic Acids Research Advance Access published October 18, 2007 ChemBank: a small-molecule screening and , 2007 .

[11]  Eric K. Neumann,et al.  Pacific Symposium on Biocomputing 11:176-187(2006) BIODASH: A SEMANTIC WEB DASHBOARD FOR DRUG DEVELOPMENT , 2022 .

[12]  Michael J. E. Sternberg,et al.  3DLigandSite: predicting ligand-binding sites using similar structures , 2010, Nucleic Acids Res..

[13]  P. Hajduk,et al.  Cheminformatic tools for medicinal chemists. , 2010, Journal of medicinal chemistry.

[14]  Peter Murray-Rust,et al.  ChemAxiom – An Ontological Framework for Chemistry in Science , 2009 .

[15]  Rajarshi Guha,et al.  Web Service Infrastructure for Chemoinformatics , 2007, J. Chem. Inf. Model..

[16]  P Ertl,et al.  Web-based cheminformatics and molecular property prediction tools supporting drug design and development at Novartis , 2003, SAR and QSAR in environmental research.

[17]  Adrian Paschke,et al.  A journey to Semantic Web query federation in the life sciences , 2009, BMC Bioinformatics.

[18]  Jean Jacques Moreau,et al.  SOAP Version 1. 2 Part 1: Messaging Framework , 2003 .

[19]  Selvanathan A. L. Narainasamy The Virtual Heart , 2005, iiWAS.

[20]  José L. Medina-Franco,et al.  Visualization of the Chemical Space in Drug Discovery , 2008 .

[21]  Igor V Tetko,et al.  Computing chemistry on the web. , 2005, Drug discovery today.

[22]  Xueliang Fang,et al.  A Web-Based 3D-Database Pharmacophore Searching Tool for Drug Discovery. , 2002 .

[23]  Carole A. Goble,et al.  myExperiment: a repository and social network for the sharing of bioinformatics workflows , 2010, Nucleic Acids Res..

[24]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[25]  Yang Liu,et al.  An Efficient Implementation of a Drug Candidate Database , 2003, J. Chem. Inf. Comput. Sci..

[26]  K. Chou,et al.  Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms , 2010 .

[27]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[28]  Jeremy G. Frey,et al.  Curation of Laboratory Experimental Data as Part of the Overall Data Lifecycle , 2006, Int. J. Digit. Curation.

[29]  Sean Ekins,et al.  Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery. , 2009, Drug discovery today.

[30]  Carl Lagoze,et al.  A Semantic eScience Platform for Chemistry , 2010, 2010 IEEE Sixth International Conference on e-Science.

[31]  Kei-Hoi Cheung,et al.  Linking Open Drug Data , 2009, I-SEMANTICS.

[32]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[33]  田中 俊典 National Center for Biotechnology Information (NCBI) , 2012 .

[34]  Richard M. Jackson,et al.  Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites , 2005, Bioinform..

[35]  Peter Lind,et al.  A Database-Centric Virtual Chemistry System , 2006, J. Chem. Inf. Model..

[36]  Jonathan W. Essex,et al.  e-Malaria: the schools Malaria project , 2008, Concurr. Comput. Pract. Exp..

[37]  Henry S. Rzepa,et al.  VChemLab: A Virtual Chemistry Laboratory. The Storage, Retrieval, and Display of Chemical Information Using Standard Internet Tools , 1998, J. Chem. Inf. Comput. Sci..

[38]  C. Qu,et al.  Application of Standard Semantic Web Services and Workflow Technologies in the SIMDAT Pharma Grid , 2005 .

[39]  Pieter F. W. Stouten,et al.  Fast prediction and visualization of protein binding pockets with PASS , 2000, J. Comput. Aided Mol. Des..

[40]  Jonathan W. Essex,et al.  Bringing Chemical Data onto the Semantic Web , 2006, J. Chem. Inf. Model..

[41]  Jonathan W. Essex,et al.  Prediction of Properties from Simulations: A Re-examination with Modern Statistical Methods , 2005, J. Chem. Inf. Model..

[42]  Lee Harland,et al.  Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery , 2009, Nature Reviews Drug Discovery.

[43]  Rajarshi Guha,et al.  Chemical Informatics Functionality in R , 2007 .

[44]  Egon L. Willighagen,et al.  The Blue Obelisk—Interoperability in Chemical Informatics , 2006, J. Chem. Inf. Model..

[45]  John Barkley,et al.  Semantic Web for the Life Sciences - Hype, Why, How and Use Case for AIDS Inhibitors , 2007, 2007 IEEE Congress on Services (Services 2007).

[46]  Bin Chen,et al.  Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data , 2010, BMC Bioinformatics.

[47]  Liu Xianming,et al.  A Time Petri Net Extended with Price Information , 2007 .

[48]  Thomas Engel,et al.  Basic Overview of Chemoinformatics. , 2007 .

[49]  Paul Watson,et al.  Accelerating Chemical Property Prediction with Cloud Computing , 2010 .

[50]  David J. Wild,et al.  An Automatic Drug Discovery Workflow Generation Tool Using Semantic Web Technologies , 2008, 2008 IEEE Fourth International Conference on eScience.

[51]  E. Prud hommeaux,et al.  SPARQL query language for RDF , 2011 .

[52]  Huajun Chen,et al.  The use of web ontology languages and other semantic web tools in drug discovery , 2010, Expert opinion on drug discovery.

[53]  David S. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[54]  Edward D. Lazowska,et al.  Trident: Scientific Workflow Workbench for Oceanography , 2008, 2008 IEEE Congress on Services - Part I.

[55]  Jonathan W. Essex,et al.  The Semantic Grid and chemistry: Experiences with CombeChem , 2006, J. Web Semant..

[56]  Egon L. Willighagen,et al.  CDK-Taverna: an open workflow environment for cheminformatics , 2010, BMC Bioinformatics.

[57]  Peter Ertl,et al.  Designing drugs on the internet? Free web tools and services supporting medicinal chemistry. , 2007, Current topics in medicinal chemistry.

[58]  M. Ghanem,et al.  Web services in the life sciences , 2005, Drug Discovery Today.

[59]  Peter Ertl,et al.  WWW-based chemical information system , 1997 .

[60]  William Lingran Chen,et al.  Chemoinformatics: Past, Present, and Future† , 2006, J. Chem. Inf. Model..

[61]  Igor V. Tetko,et al.  Internet in Drug Design and Discovery , 2008 .