Global Stability of A Tuberculosis Model with Vertical Transmission

This paper considers an SEIT epidemic model that incorporates proportion recruitment and with vertical transmission. By means of Lyapunov function and LaSalle's invariant set theorem, we proved the global asymptotical stable results of the disease-free equilibrium and the endemic equilibrium with the help of numerical simulations.

[1]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[2]  M. Li,et al.  Global dynamics of a SEIR model with varying total population size. , 1999, Mathematical Biosciences.

[3]  Carlos Castillo-Chavez,et al.  Tuberculosis models with fast and slow dynamics: the role of close and casual contacts. , 2002, Mathematical biosciences.

[4]  J. Chin,et al.  Control of Communicable Diseases Manual , 2002 .

[5]  C. Castillo-Chavez,et al.  Transmission and dynamics of tuberculosis on generalized households. , 2000, Journal of theoretical biology.

[6]  J. Mugisha,et al.  Mathematical Model Mathematical Models for the Dynamics of Tuberculosis in Density-dependent Populations: The Case of Internally Displaced Peoples' Camps (IDPCs) in Uganda , 2005 .

[7]  C. Castillo-Chavez,et al.  To treat or not to treat: the case of tuberculosis , 1997, Journal of mathematical biology.

[8]  Denise Kirschner,et al.  Comparing epidemic tuberculosis in demographically distinct heterogeneous populations. , 2002, Mathematical biosciences.

[9]  Paul Waltman,et al.  Persistence in dynamical systems , 1986 .

[10]  Ben Y. Zhao,et al.  Tapestry: a resilient global-scale overlay for service deployment , 2004, IEEE Journal on Selected Areas in Communications.

[11]  David R. Karger,et al.  Koorde: A Simple Degree-Optimal Distributed Hash Table , 2003, IPTPS.

[12]  Abhijit Sengupta,et al.  On a Lightwave Network Topology Using Kauts Digraphs , 1999, IEEE Trans. Computers.

[13]  Pierre Fraigniaud,et al.  D2B: A de Bruijn based content-addressable network , 2006, Theor. Comput. Sci..

[14]  Kumar N. Sivarajan,et al.  Lightwave networks based on de Bruijn graphs , 1994, TNET.

[15]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM 2001.

[16]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[17]  C. Connell McCluskey,et al.  Global Analysis of Two Tuberculosis Models , 2004 .

[18]  Carlos Castillo-Chavez,et al.  MATHEMATICAL MODELS FOR THE DISEASE DYNAMICS OF TUBERCULOSIS , 1996 .

[19]  C. Castillo-Chavez,et al.  An Overview of Dynamical Models of Tuberculosis , 2002 .

[20]  Philip S. Brachman,et al.  Control of Communicable Diseases Manual, 17th Edition , 2001 .

[21]  R. Redheffer,et al.  Nonautonomous SEIRS and Thron models for epidemiology and cell biology , 2004 .

[22]  Jinshu Su,et al.  Graph-Theoretic Analysis of Kautz Topology and DHT Schemes , 2004, NPC.

[23]  H R Thieme,et al.  Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. , 1992, Mathematical biosciences.

[24]  David R. Karger,et al.  Looking up data in P2P systems , 2003, CACM.