The strain gradient effect in microelectromechanical systems (MEMS)

Metallic materials display strong size effect when the characteristic length of deformation is of the order of microns. The theory of mechanism-based strain gradient (MSG) plasticity established from the Taylor dislocation model has captured this size dependence of material behavior at the micron scale very well. The strain gradient effect in microelectromechanical systems (MEMS) is investigated in this paper via the MSG plasticity theory since the typical size of MEMS is of the order of microns (comparable to the internal material length in MSG plasticity). Through an example of a digital micromirror device (DMD), it is shown that the strain gradient effect significantly increases the mechanical strain energy in the DMD, and reduces the rotation time of the micromirror. However, the strain gradient has no effect on the critical bias voltage governing the fast rotation of the micromirror.

[1]  Alan Cottrell,et al.  Mechanical Properties of Matter , 1964 .

[2]  Zhenyu Xue,et al.  Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity , 2002 .

[3]  H. Dai Geometrically-necessary dislocation density in continuum plasticity theory, FEM implementation and applications , 1997 .

[4]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[5]  Norman A. Fleck,et al.  Strain gradient crystal plasticity: size-dependentdeformation of bicrystals , 1999 .

[6]  A. Needleman Computational mechanics at the mesoscale , 2000 .

[7]  W. Nix Elastic and plastic properties of thin films on substrates : nanoindentation techniques , 1997 .

[8]  Norman A. Fleck,et al.  A phenomenological theory for strain gradient effects in plasticity , 1993 .

[9]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[10]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity—II. Analysis , 2000 .

[11]  van der Erik Giessen,et al.  A discrete dislocation analysis of residual stresses in a composite material , 1999 .

[12]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[13]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[14]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[15]  D. Griffiths Introduction to Electrodynamics , 2017 .

[16]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[17]  D. E. Kramer,et al.  Plastic strain and strain gradients at very small indentation depths , 2001 .

[18]  Huajian Gao,et al.  A study of microindentation hardness tests by mechanism-based strain gradient plasticity , 2000 .

[19]  A. Needleman,et al.  Discrete dislocation simulations and size dependent hardening in single slip , 1998 .

[20]  William D. Nix,et al.  The Role of Indentation Depth on the Measured Hardness of Materials , 1993 .

[21]  Amit Acharya,et al.  Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .

[22]  D. Clarke,et al.  Size dependent hardness of silver single crystals , 1995 .

[23]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[24]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .

[25]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[26]  D. Parks,et al.  Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .

[27]  M. Ashby,et al.  Micro-hardness of annealed and work-hardened copper polycrystals , 1996 .

[28]  Amit Acharya,et al.  Lattice incompatibility and a gradient theory of crystal plasticity , 2000 .

[29]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[30]  Anthony G. Evans,et al.  A microbend test method for measuring the plasticity length scale , 1998 .

[31]  M. R. Douglass,et al.  Lifetime estimates and unique failure mechanisms of the Digital Micromirror Device (DMD) , 1998, 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173).

[32]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[33]  Larry J. Hornbeck,et al.  The DMD^TM Projection Display Chip: A MEMS-Based Technology , 2001 .

[34]  Y. Milman,et al.  Microindentations on W and Mo oriented single crystals: An STM study , 1993 .

[35]  van der Erik Giessen,et al.  A discrete dislocation analysis of bending , 1999 .

[36]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[37]  R. Hill The mathematical theory of plasticity , 1950 .

[38]  S. Suresh,et al.  Nano-indentation of copper thin films on silicon substrates , 1999 .

[39]  W. Nix,et al.  Modeling Plasticity at the Micrometer Scale , 1999, Naturwissenschaften.

[40]  Shaohua Chen,et al.  A new hardening law for strain gradient plasticity , 2000 .

[41]  A. Needleman,et al.  A discrete dislocation analysis of mode I crack growth , 2000 .

[42]  van der Erik Giessen,et al.  COMPARISON OF DISCRETE DISLOCATION AND CONTINUUM PLASTICITY PREDICTIONS FOR A COMPOSITE MATERIAL , 1997 .