Building Classification from Lidar Data for Spatio-temporal Assessment of 3D Urban Developments

[1]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[2]  Ansgar Brunn,et al.  Hierarchical Bayesian nets for building extraction using dense digital surface models , 1998 .

[3]  J. C. Trinder,et al.  Support Vector Machines: Optimization and Validation for Land Cover Mapping Using Aerial Images and Lidar Data , 1999 .

[4]  Peter Axelsson,et al.  Processing of laser scanner data-algorithms and applications , 1999 .

[5]  J. Anthony Gualtieri,et al.  Support vector machines for hyperspectral remote sensing classification , 1999, Other Conferences.

[6]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[7]  David A Clausi An analysis of co-occurrence texture statistics as a function of grey level quantization , 2002 .

[8]  D. Tóvári,et al.  OBJECT CLASSIFICATION IN LASERSCANNING DATA , 2004 .

[9]  Ryozo Ooka,et al.  Extraction of parameters from remote sensing data for environmental indices for urban sustainability , 2005 .

[10]  Dengsheng Lu,et al.  Land‐cover binary change detection methods for use in the moist tropical region of the Amazon: a comparative study , 2005 .

[11]  John Trinder,et al.  Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection , 2005, Inf. Fusion.

[12]  R. Tateishi,et al.  Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing , 2006 .

[13]  David P. Helmbold,et al.  Aerial LiDAR Data Classification Using Support Vector Machines (SVM) , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[14]  T. Blaschke,et al.  Quantifying and Qualifying Urban Green by Integrating Remote Sensing, GIS, and Social Science Method , 2008 .

[15]  Azarakhsh Rafiee,et al.  Classification of Buildings and Roads Using Support Vector Machine , 2008, 2008 Digital Image Computing: Techniques and Applications.

[16]  LOCAL SPATIAL STATISTICS FOR REMOTELY SENSED IMAGE CLASSIFICATION OF MANGROVE , 2008 .

[17]  José Luis Rojo-Álvarez,et al.  Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Wei Su,et al.  Textural and local spatial statistics for the object‐oriented classification of urban areas using high resolution imagery , 2008 .

[19]  Francesca Bovolo,et al.  A Novel Approach to Unsupervised Change Detection Based on a Semisupervised SVM and a Similarity Measure , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[20]  John Trinder,et al.  Evaluation of the self‐organizing map classifier for building detection from lidar data and multispectral aerial images , 2009 .

[21]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[22]  Patrick Hostert,et al.  Mapping megacity growth with multi-sensor data , 2010 .

[23]  Jungho Im,et al.  ISPRS Journal of Photogrammetry and Remote Sensing , 2022 .

[24]  C. Fraser,et al.  Building detection in complex scenes thorough effective separation of buildings from trees , 2012 .

[25]  Volker Coors,et al.  Combining system dynamics model, GIS and 3D visualization in sustainability assessment of urban residential development , 2012 .

[26]  Thomas H. Kolbe,et al.  Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3D City Models: The Energy Atlas of Berlin , 2012 .

[27]  Francesca Bovolo,et al.  Supervised change detection in VHR images using contextual information and support vector machines , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[28]  Dongmei Chen,et al.  Change detection from remotely sensed images: From pixel-based to object-based approaches , 2013 .

[29]  Jiahui Zhang,et al.  An effective Building Neighborhood Green Index model for measuring urban green space , 2016, Int. J. Digit. Earth.

[30]  Sara Shirowzhan,et al.  Enhanced Autocorrelation-Based Algorithms for Filtering Airborne Lidar Data over Urban Areas , 2016 .