Perfluoroctylsilane grafted Ti3C2X-based hydrogel liquid marble for controlled movement, self-assembly, light-induced release, and water evaporation system

[1]  Jizhou He,et al.  A three-terminal heat engine based on resonant-tunneling multi-level quantum dots , 2022, The European Physical Journal B.

[2]  Yelong Zheng,et al.  Liquid marbles, floating droplets: preparations, properties, operations and applications , 2022, RSC advances.

[3]  Gang Ge,et al.  Self-Healing Hydrogel with Multiple Dynamic Interactions for Multifunctional Epidermal Sensor , 2022, Applied Surface Science.

[4]  S. Fu,et al.  Multiresponsive Ti3C2Tx MXene-Based Actuators Enabled by Dual-Mechanism Synergism for Soft Robotics. , 2022, ACS applied materials & interfaces.

[5]  J. Noh,et al.  Advancements in Solar Desalination of Seawater by Various Ti3C2 MXene Based Morphologies for Freshwater Generation: A Review , 2021, Catalysts.

[6]  H. Alshareef,et al.  3D Printing of Hydrogels for Stretchable Ionotronic Devices , 2021, Advanced Functional Materials.

[7]  J. Tkáč,et al.  Exchange Counterion in Polycationic Hydrogels: Tunability of Hydrophobicity, Water State, and Floating Capability for a Floating pH Device , 2021, Gels.

[8]  Carmen C. Mayorga-Martinez,et al.  Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives , 2021, Journal of Materials Chemistry A.

[9]  K. Liao,et al.  Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications , 2021, npj 2D Materials and Applications.

[10]  Dongping Sun,et al.  A Moisture‐Driven Actuator Based on Polydopamine‐Modified MXene/Bacterial Cellulose Nanofiber Composite Film , 2021, Advanced Functional Materials.

[11]  Ying Hu,et al.  Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti3C2Tx MXene Film Driven by Natural Sunlight Fluctuation. , 2021, ACS nano.

[12]  Wenli Zhang,et al.  Ti3C2Tx MXene-Activated Fast Gelation of Stretchable and Self-Healing Hydrogels: A Molecular Approach. , 2021, ACS nano.

[13]  J. Tkáč,et al.  Ti3C2 MXene-Based Nanobiosensors for Detection of Cancer Biomarkers , 2020, Novel Nanomaterials.

[14]  Dingxin Xu,et al.  2D MXene Nanomaterials: Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications (Adv. Funct. Mater. 47/2020) , 2020 .

[15]  J. Tkáč,et al.  Electrochemical Investigation of Interfacial Properties of Ti3C2Tx MXene Modified by Aryldiazonium Betaine Derivatives , 2020, Frontiers in Chemistry.

[16]  N. Nguyen,et al.  Liquid Marbles as Miniature Reactors for Chemical and Biological Applications , 2020 .

[17]  J. Tkáč,et al.  Ti3C2Tx MXene-Based Light-Responsive Hydrogel Composite for Bendable Bilayer Photoactuator , 2020, Nanomaterials.

[18]  J. Tkáč,et al.  Ultrasensitive Ti3C2TX MXene/Chitosan Nanocomposite-Based Amperometric Biosensor for Detection of Potential Prostate Cancer Marker in Urine Samples , 2020, Processes.

[19]  I. Oh,et al.  Stimuli‐Responsive MXene‐Based Actuators , 2020, Advanced Functional Materials.

[20]  Ihsanullah Ihsanullah,et al.  Potential of MXenes in Water Desalination: Current Status and Perspectives , 2020, Nano-micro letters.

[21]  J. Tkáč,et al.  Remarkable differences in the voltammetric response towards hydrogen peroxide, oxygen and Ru(NH3)63+ of electrode interfaces modified with HF or LiF-HCl etched Ti3C2Tx MXene , 2019, Microchimica Acta.

[22]  R. P. Pandey,et al.  Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes) , 2019, Materials Today.

[23]  Hongtao Yu,et al.  Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance. , 2019, ACS nano.

[24]  J. Tkáč,et al.  2D MXenes as Perspective Immobilization Platforms for Design of Electrochemical Nanobiosensors , 2019, Electroanalysis.

[25]  Il-Kwon Oh,et al.  MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics , 2019, Science Robotics.

[26]  Shufen Zhang,et al.  MXene Ti3C2Tx for phase change composite with superior photothermal storage capability , 2019, Journal of Materials Chemistry A.

[27]  Y. Gogotsi,et al.  Introduction to 2D Transition Metal Carbides and Nitrides (MXenes) , 2019, 2D Metal Carbides and Nitrides (MXenes).

[28]  J. Tkáč,et al.  Tailoring Electrocatalytic Properties of Pt Nanoparticles Grown on Ti3C2TXMXene Surface , 2019, Journal of The Electrochemical Society.

[29]  Yadong Li,et al.  Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction , 2018, Nature Catalysis.

[30]  K. Salama,et al.  Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. , 2018, Biosensors & bioelectronics.

[31]  J. Chew,et al.  Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation , 2018, Journal of Membrane Science.

[32]  Chenhui Yang,et al.  A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination , 2018 .

[33]  Jing Lin,et al.  Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. , 2018, Chemical Society reviews.

[34]  Rui Liu,et al.  High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites , 2018, ACS omega.

[35]  Lijie Dong,et al.  Flexible Hydrophobic Antifouling Coating with Oriented Nanotopography and Nonleaking Capsaicin. , 2018, ACS applied materials & interfaces.

[36]  Q. Fei,et al.  Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states , 2018 .

[37]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[38]  J. Tkáč,et al.  Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. , 2017, Electrochimica acta.

[39]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[40]  Mohammad Khazaei,et al.  Electronic properties and applications of MXenes: a theoretical review , 2017, 1702.07442.

[41]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[42]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[43]  Y. S. Zhang,et al.  Hydrophobic Hydrogels: Toward Construction of Floating (Bio)microdevices , 2016 .

[44]  Tianxi Liu,et al.  Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. , 2015, Angewandte Chemie.

[45]  G McHale,et al.  Liquid marbles: topical context within soft matter and recent progress. , 2015, Soft matter.

[46]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[47]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[48]  Gustaaf Van Tendeloo,et al.  Hydrophobic interactions modulate self-assembly of nanoparticles. , 2012, ACS nano.

[49]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[50]  I. Krupa,et al.  Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: Synthesis and characterization , 2011 .

[51]  Hongxia Wang,et al.  Magnetic Liquid Marbles: A “Precise” Miniature Reactor , 2010, Advanced materials.

[52]  Steven P. Armes,et al.  pH-responsive liquid marbles stabilized with poly(2-vinylpyridine) particles , 2010 .

[53]  Edward Bormashenko,et al.  Revealing of water surface pollution with liquid marbles , 2009 .

[54]  David Quéré,et al.  Properties of liquid marbles , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  G M Whitesides,et al.  Molecule-mimetic chemistry and mesoscale self-assembly. , 2001, Accounts of chemical research.

[56]  David Quéré,et al.  Liquid marbles , 2001, Nature.

[57]  George M. Whitesides,et al.  Modeling of Menisci and Capillary Forces from the Millimeter to the Micrometer Size Range , 2001 .

[58]  J. Engberts,et al.  Hydrophobic Effects. Opinions and Facts , 1993 .