Gain of high-pressure CO 2 lasers

Previous theories of high-pressure CO 2 gain spectra have been modified to include gain Contributions from the newly discovered 00°2 and 00°3 sequence bands. It is shown that the inclusion of these bands has important consequences for TE CO 2 lasers. At a pressure of 14 atm, the sequence bands typically cause a 40 percent increase in calculated gain at all frequencies. Even at pressures as low as 1 atm, the presence of the sequence lines leads to anomalous gain coefficients on many of the regular 00°1 laser lines.

[1]  K. Siemsen,et al.  Heterodyne frequency measurements of CO2 laser hot-band transitions , 1977 .

[2]  K. Siemens,et al.  Heterodyne frequency measurements of CO2 laser sequence-band transitions , 1977 .

[3]  K. Siemsen,et al.  Laser power and gain measurements on the sequence bands of CO2 , 1977 .

[4]  P. Pinson,et al.  Emission spectrum of CO2 in the 9.6 μm region , 1976 .

[5]  E. George,et al.  High‐pressure absorption spectrum of CO2 laser bands at 10 μm , 1975 .

[6]  R. Fedosejevs,et al.  Gain characteristics of a multiatmosphere UV-preionized CO 2 laser , 1975 .

[7]  L. Taylor,et al.  Rotational temperature determinations in molecular gas lasers , 1975 .

[8]  J. Reid,et al.  Studies of the inversion and lower level relaxation in pulsed TE CO 2 discharges , 1975 .

[9]  E. George,et al.  Gain spectrum of a high‐pressure CO2 laser , 1975 .

[10]  G. Schappert,et al.  Rotational temperature in a high‐pressure pulsed CO2 laser , 1975 .

[11]  S. Singer Observations of anomalous gain coefficients in TEA double-discharge CO 2 lasers , 1974 .

[12]  W. Whitney,et al.  Operation of a 15‐atm electron‐beam‐controlled CO2 laser , 1974 .

[13]  R. Lang,et al.  Gain measurements in a tea CO2 laser , 1974 .

[14]  M. Tavis,et al.  Gain of high-pressure CO 2 lasers , 1974 .

[15]  A. S. Provorov,et al.  CW High-pressure Tunable COP Laser with a Mixture of CO, Isotopes , 1974 .

[16]  M. Richardson,et al.  Continuously tunable high‐pressure CO2 laser with uv photopreionization , 1973 .

[17]  O. Wood,et al.  Optically pumped 33‐atm CO2 laser , 1973 .

[18]  B. Patel,et al.  Rotational line overlap in CO2 laser transitions , 1973 .

[19]  W. Christiansen,et al.  Mixed Mode Contributions to Absorption in CO(2) at 10.6micro. , 1973, Applied optics.

[20]  O. M. Kerimov,et al.  Population Inversion in the Active Medium of an Electroionization CO 2 Laser at a Working-mixture Pressure up to 20 Atmospheres , 1973 .

[21]  A. M. Robinson Gain Distribution in a CO2 TEA Laser , 1972 .

[22]  A. Hertzberg,et al.  ABSORPTION IN CO2 AT 10.6 μ WITH ROTATIONAL LINE OVERLAP , 1971 .

[23]  T. K. Mccubbin,et al.  The Temperature Dependence of the Self-Broadened Half-Width of the P-20 Line in the 001-100 Band of CO(2). , 1970, Applied optics.

[24]  C. Rossetti,et al.  Development and spectroscopic application of monochromatic and single mode CO 2 lasers , 1970 .