Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications.

Acoustic actuation of fluids at small scales may finally enable a comprehensive lab-on-a-chip revolution in microfluidics, overcoming long-standing difficulties in fluid and particle manipulation on-chip. In this comprehensive review, we examine the fundamentals of piezoelectricity, piezoelectric materials, and transducers; revisit the basics of acoustofluidics; and give the reader a detailed look at recent technological advances and current scientific discussions in the discipline. Recent achievements are placed in the context of classic reports for the actuation of fluid and particles via acoustic waves, both within sessile drops and closed channels. Other aspects of micro/nano acoustofluidics are examined: atomization, translation, mixing, jetting, and particle manipulation in the context of sessile drops and fluid mixing and pumping, particle manipulation, and formation of droplets in the context of closed channels, plus the most recent results at the nanoscale. These achievements will enable applications across the disciplines of chemistry, biology, medicine, energy, manufacturing, and we suspect a number of others yet unimagined. Basic design concepts and illustrative applications are highlighted in each section, with an emphasis on lab-on-a-chip applications.

[1]  Adrian Neild,et al.  Microfluidic mixing under low frequency vibration. , 2009, Lab on a chip.

[2]  G. Moonen,et al.  Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. , 2000, Journal of biomedical materials research.

[3]  J. Friend,et al.  Vibration‐Induced Deagglomeration and Shear‐Induced Alignment of Carbon Nanotubes in Air , 2015 .

[4]  Peidong Yang,et al.  Inorganic nanotubes: a novel platform for nanofluidics. , 2006, Accounts of chemical research.

[5]  David B. Bogy,et al.  Measurement of head/disk spacing with a laser interferometer , 1988 .

[6]  N. Tas,et al.  Capillarity at the nanoscale. , 2010, Chemical Society reviews.

[7]  S. Benchabane,et al.  Subwavelength focusing of surface acoustic waves generated by an annular interdigital transducer , 2008 .

[8]  Steve Rothberg,et al.  Vibration measurements using continuous scanning laser Doppler vibrometry: Theoretical velocity sensitivity analysis with applications , 2003 .

[9]  A. Neild,et al.  Acoustic tweezers via sub–time-of-flight regime surface acoustic waves , 2016, Science Advances.

[10]  Jinhong Guo,et al.  The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect. , 2015, Nanoscale.

[11]  Leslie Y Yeo,et al.  The dynamics of surface acoustic wave‐driven scaffold cell seeding , 2009, Biotechnology and bioengineering.

[12]  David J. Collins,et al.  Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW , 2016 .

[13]  R Wilson,et al.  Microfluidic resonant cavities enable acoustophoresis on a disposable superstrate. , 2014, Lab on a chip.

[14]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[15]  David Morgan,et al.  Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing , 2007 .

[16]  Tuncay Alan,et al.  Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics , 2014 .

[17]  María-Isabel Rocha-Gaso,et al.  Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review , 2009, Sensors.

[18]  Yury Gogotsi,et al.  Review: static and dynamic behavior of liquids inside carbon nanotubes , 2008 .

[19]  Kazem Alemzadeh,et al.  2009 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) , 2009 .

[20]  Henrik Bruus,et al.  Acoustofluidics 7: The acoustic radiation force on small particles. , 2012, Lab on a chip.

[21]  Leslie Y Yeo,et al.  Surface acoustic wave concentration of particle and bioparticle suspensions , 2007, Biomedical microdevices.

[22]  B. Holzapfel,et al.  Surface Acoustic Waves—A New Thin-Film Deposition Approach for Coated Conductors , 2016, IEEE Transactions on Applied Superconductivity.

[23]  J. Friend,et al.  Note: calibration of atomic force microscope cantilevers using only their resonant frequency and quality factor. , 2014, The Review of scientific instruments.

[24]  Leslie Y Yeo,et al.  Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. , 2015, Biomicrofluidics.

[25]  Achim Wixforth,et al.  Acoustic mixing at low Reynold's numbers , 2006 .

[26]  Tsung-Tsong Wu,et al.  Analysis and design of focused interdigital transducers. , 2005, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[27]  Gwo-Bin Lee,et al.  Optically induced flow cytometry for continuous microparticle counting and sorting. , 2008, Biosensors & bioelectronics.

[28]  C. Chou,et al.  Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching , 2004 .

[29]  James F. Buckwalter,et al.  A 0.4–6-GHz 17-dBm B1dB 36-dBm IIP3 Channel-Selecting Low-Noise Amplifier for SAW-Less 3G/4G FDD Diversity Receivers , 2016, IEEE Transactions on Microwave Theory and Techniques.

[30]  Showko Shiokawa,et al.  Study on SAW Streaming and its Application to Fluid Devices , 1990 .

[31]  Roland Zengerle,et al.  Microfluidic platforms for lab-on-a-chip applications. , 2007, Lab on a chip.

[32]  Lawrence A. Crum,et al.  Bjerknes forces on bubbles in a stationary sound field , 1975 .

[33]  Jianbo Zhou,et al.  Acoustic streaming of a sharp edge. , 2014, The Journal of the Acoustical Society of America.

[34]  Leslie Y Yeo,et al.  HYbriD Resonant Acoustics (HYDRA) , 2016, Advanced materials.

[35]  N. Quirke,et al.  Temperature-driven pumping of fluid through single-walled carbon nanotubes. , 2007, Nano letters.

[36]  J. Friend,et al.  Precise drop dispensation on superhydrophobic surfaces using acoustic nebulization , 2013 .

[37]  C. Durniak,et al.  Soliton interaction in a complex plasma. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Toshiro Higuchi,et al.  Surface acoustic wave atomizer with pumping effect , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[39]  Daniel Ahmed,et al.  A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles , 2009 .

[40]  Yuanjin Zheng,et al.  Real time size-dependent particle segregation and quantitative detection in a surface acoustic wave-photoacoustic integrated microfluidic system , 2017 .

[41]  E. Charlaix,et al.  Nanofluidics, from bulk to interfaces. , 2009, Chemical Society reviews.

[42]  Mohammad Ali Mohammad,et al.  A third-order mode high frequency biosensor with atomic resolution. , 2015, Biosensors & bioelectronics.

[43]  Satoshi Fujii,et al.  Diamond-based surface acoustic wave devices , 2003 .

[44]  John F. Rabolt,et al.  Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers , 2002 .

[45]  M. Cecchini,et al.  Nanoliter-Droplet Acoustic Streaming via Ultra High Frequency Surface Acoustic Waves , 2014, Advanced materials.

[46]  Steven A Soper,et al.  Thermoplastic nanofluidic devices for biomedical applications. , 2017, Lab on a chip.

[47]  Ciprian Iliescu,et al.  Rapid Enhancement of Cellular Spheroid Assembly by Acoustically Driven Microcentrifugation. , 2016, ACS biomaterials science & engineering.

[48]  Julien Reboud,et al.  Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. , 2010, Lab on a chip.

[49]  James Friend,et al.  Capillary wave motion excited by high frequency surface acoustic waves , 2010 .

[50]  Richard S. Larson,et al.  Rapid Detection of Ebola Virus with a Reagent-Free, Point-of-Care Biosensor , 2015, Sensors.

[51]  Sung Jae Kim,et al.  Amplified electrokinetic response by concentration polarization near nanofluidic channel. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[52]  Nam-Trung Nguyen,et al.  Self-Aligned Interdigitated Transducers for Acoustofluidics , 2016, Micromachines.

[53]  Tony Jun Huang,et al.  A high-throughput acoustic cell sorter. , 2015, Lab on a chip.

[54]  O. Matar,et al.  Low power sessile droplets actuation via modulated surface acoustic waves , 2012, 1203.1841.

[55]  Leslie Y Yeo,et al.  Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films , 2012, Nature Communications.

[56]  S. Menzel,et al.  Influence of Viscosity in Fluid Atomization with Surface Acoustic Waves , 2016 .

[57]  P. Marmottant,et al.  Controlled vesicle deformation and lysis by single oscillating bubbles , 2003, Nature.

[58]  J.-L. Thomas,et al.  On the influence of viscosity and caustics on acoustic streaming in sessile droplets: an experimental and a numerical study with a cost-effective method , 2017, Journal of Fluid Mechanics.

[59]  Fred S. Hickernell,et al.  -3- Surface acoustic wave technology macrosuccess through microseisms , 1999 .

[60]  Po-Hsun Huang,et al.  Tunable nanowire patterning using standing surface acoustic waves. , 2013, ACS nano.

[61]  Sung Jae Kim,et al.  Direct seawater desalination by ion concentration polarization. , 2010, Nature nanotechnology.

[62]  J. Korlach,et al.  DNA fragment sizing by single molecule detection in submicrometer-sized closed fluidic channels. , 2002, Analytical chemistry.

[63]  M. Nardelli,et al.  Collective polarization effects in β-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene , 2005 .

[64]  Eric Lauga,et al.  Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies , 2014, 1410.7721.

[65]  J Reboud,et al.  Visualization of Surface Acoustic Waves in Thin Liquid Films , 2016, Scientific Reports.

[66]  Malcolm R. Mackley,et al.  Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids , 2008 .

[67]  Martyn Hill,et al.  Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. , 2012, Lab on a chip.

[68]  S. Harazim,et al.  Compact SAW aerosol generator , 2017, Biomedical microdevices.

[69]  Robert E. Apfel,et al.  Acoustic radiation pressure produced by a beam of sound , 1981 .

[70]  Daniel Ahmed,et al.  A millisecond micromixer via single-bubble-based acoustic streaming. , 2009, Lab on a chip.

[71]  Tsung-Tsong Wu,et al.  Frequency response of a focused SAW device based on concentric wave surfaces: simulation and experiment , 2005 .

[72]  Yi Zhang,et al.  Phononic crystal structures for acoustically driven microfluidic manipulations. , 2011, Lab on a chip.

[73]  Pascal Picart,et al.  High-speed holographic metrology: principle, limitations, and application to vibroacoustics of structures , 2016 .

[74]  Yongrae Roh,et al.  Surface Acoustic Wave DNA Sensor with Micro-Fluidic Channels , 2007 .

[75]  J. Friend,et al.  Nozzleless spray cooling using surface acoustic waves , 2015 .

[76]  Leslie Y Yeo,et al.  Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry. , 2011, Analytical chemistry.

[77]  Hong Hu,et al.  Experimental investigation of surface acoustic wave atomization , 2016 .

[78]  Junhui Hu,et al.  A /spl pi/-shaped ultrasonic tweezers concept for manipulation of small particles , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[79]  Abraham P. Lee,et al.  Lateral air cavities for microfluidic pumping with the use of acoustic energy , 2011 .

[80]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[81]  Peng Li,et al.  Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW). , 2014, Lab on a chip.

[82]  Mengxi Wu,et al.  Mixing high-viscosity fluids via acoustically driven bubbles , 2017, Journal of micromechanics and microengineering : structures, devices, and systems.

[83]  Sung Jae Kim,et al.  Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. , 2007, Physical review letters.

[84]  Stephen Mann,et al.  Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning , 2016, Nature Communications.

[85]  Christian Druon,et al.  SAW nanopump for handling droplets in view of biological applications , 2006 .

[86]  R. Netz,et al.  Nanoscale pumping of water by AC electric fields. , 2012, Nano letters.

[87]  Armando R Tovar,et al.  Lateral cavity acoustic transducer. , 2009, Lab on a chip.

[88]  Pascal Picart,et al.  Investigation of 3D surface acoustic waves in granular media with 3-color digital holography , 2017 .

[89]  K. Uchino,et al.  Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary , 1998 .

[90]  Peng Li,et al.  Controlling cell–cell interactions using surface acoustic waves , 2014, Proceedings of the National Academy of Sciences.

[91]  Po-Hsun Huang,et al.  Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers , 2016, Advanced materials.

[92]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[93]  Rasim Guldiken,et al.  Dual surface acoustic wave-based active mixing in a microfluidic channel , 2013 .

[94]  David R Goodlett,et al.  Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. , 2010, Analytical chemistry.

[95]  James Friend,et al.  Characteristics of ultrasonic suction pump without moving parts , 2005 .

[96]  Jin Ho Jung,et al.  On-demand droplet splitting using surface acoustic waves. , 2016, Lab on a chip.

[97]  Anders Kristensen,et al.  Injection molded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments. , 2011, Lab on a chip.

[98]  Louis Vessot King,et al.  On the Acoustic Radiation Pressure on Spheres , 1934 .

[99]  Zhifang Fan,et al.  Sessile droplets for chemical and biological assays. , 2017, Lab on a chip.

[100]  K. Choi,et al.  Hybrid Surface Acoustic Wave- Electrohydrodynamic Atomization (SAW-EHDA) For the Development of Functional Thin Films , 2015, Scientific Reports.

[101]  U. Heinz,et al.  Towards Relativistic Transport-Theory of Nuclear Matter , 1994 .

[102]  Mark A. Burns,et al.  Acoustically driven programmable liquid motion using resonance cavities , 2009, Proceedings of the National Academy of Sciences.

[103]  Adrian Neild,et al.  Selective particle trapping using an oscillating microbubble. , 2011, Lab on a chip.

[104]  Amir Manbachi,et al.  Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection , 2011 .

[105]  Amarin G. McDonnell,et al.  Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution. , 2015, Soft matter.

[106]  Fabio Beltram,et al.  Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves , 2014 .

[107]  Derek B. Ingham,et al.  Laminar boundary layer on an impulsively started rotating sphere , 1979 .

[108]  Tuncay Alan,et al.  Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. , 2015, Lab on a chip.

[109]  Daniel Ahmed,et al.  Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). , 2008, Lab on a chip.

[110]  Xingzhong Zhao,et al.  Enhanced particle focusing in microfluidic channels with standing surface acoustic waves , 2010 .

[111]  Eric Lauga,et al.  Bubble-based acoustic micropropulsors: active surfaces and mixers. , 2017, Lab on a chip.

[112]  A Lenshof,et al.  Acoustofluidics 5: Building microfluidic acoustic resonators. , 2012, Lab on a chip.

[113]  K. Yosioka,et al.  Acoustic radiation pressure on a compressible sphere , 1955 .

[114]  Ultrasonic trapping of small particles by sharp edges vibrating in a flexural mode , 2004 .

[115]  Amarin G. McDonnell,et al.  Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows. , 2015, Soft matter.

[116]  L. Rayleigh On The Instability Of Jets , 1878 .

[117]  James Friend,et al.  Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting , 2011 .

[118]  Trapping and exclusion zones in complex streaming patterns around a large assembly of microfluidic bubbles under ultrasound , 2018 .

[119]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.

[120]  A. Kundt,et al.  Ueber longitudinale Schwingungen und Klangfiguren in cylindrischen Flüssigkeitssäulen , 1874 .

[121]  M. Cecchini,et al.  Interaction-free, automatic, on-chip fluid routing by surface acoustic waves. , 2012, Lab on a chip.

[122]  John E. Cunningham,et al.  Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves , 2009 .

[123]  James Friend,et al.  Interfacial destabilization and atomization driven by surface acoustic waves , 2008 .

[124]  Lin Wang,et al.  Standing surface acoustic wave (SSAW) based multichannel cell sorting. , 2012, Lab on a chip.

[125]  V. Strashilov,et al.  Surface transverse waves: properties, devices, and analysis , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[126]  K. Mullis,et al.  Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. , 1986, Cold Spring Harbor symposia on quantitative biology.

[127]  Po-Hsun Huang,et al.  A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles. , 2012, Applied physics letters.

[128]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[129]  W. J. Merz Piezoelectric Ceramics , 1972, Nature.

[130]  Fabio Beltram,et al.  Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays. , 2010, Lab on a chip.

[131]  M. Lysakowska,et al.  Surface acoustic waves on X-cut LiNbO/sub 3/ , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[132]  James Friend,et al.  Rapid fluid flow and mixing induced in microchannels using surface acoustic waves , 2009 .

[133]  A. Wixforth,et al.  Planar chip device for PCR and hybridization with surface acoustic wave pump. , 2005, Lab on a chip.

[134]  Edward G. S. Paige,et al.  Rayleigh-Wave Theory and Application , 1985 .

[135]  John E. Cunningham,et al.  Acousto-microfluidics: Transporting microbubble and microparticle arrays in acoustic traps using surface acoustic waves , 2012 .

[136]  Ken-ya Hashimoto,et al.  Surface Acoustic Wave Filters , 2005 .

[137]  E. Salzmann,et al.  ELASTIC SURFACE WAVES IN QUARTZ AT 316 MHz , 1967 .

[138]  J. Friend,et al.  Poloidal flow and toroidal particle ring formation in a sessile drop driven by megahertz order vibration. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[139]  Leslie Y Yeo,et al.  Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization , 2008, Nanotechnology.

[140]  Lichao Gao,et al.  Wetting 101 degrees. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[141]  Y. Gulyaev Review of shear surface acoustic waves in solids , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[142]  Tuncay Alan,et al.  Microfluidic plug steering using surface acoustic waves. , 2015, Lab on a chip.

[143]  James Friend,et al.  Surface Acoustic Wave Microfluidics , 2014 .

[144]  Junhui Hu,et al.  New type of linear ultrasonic actuator based on a plate-shaped vibrator with triangular grooves. , 2004, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[145]  Rasim Guldiken,et al.  Effects of polydimethylsiloxane (PDMS) microchannels on surface acoustic wave-based microfluidic devices , 2014 .

[146]  Tuncay Alan,et al.  Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. , 2013, Lab on a chip.

[147]  Sehyun Shin,et al.  Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. , 2011, Lab on a chip.

[148]  Zhong Lin Wang,et al.  Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts , 2003 .

[149]  K. Nelson,et al.  Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol. , 2009, Physical review letters.

[150]  A. Abate,et al.  Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. , 2009, Lab on a chip.

[151]  A. Kundt Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen , 1866 .

[152]  Virgilio Mattoli,et al.  Rapid and Controllable Digital Microfluidic Heating by Surface Acoustic Waves , 2015 .

[153]  Adrian Neild,et al.  Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. , 2016, Lab on a chip.

[154]  Régis Marchiano,et al.  Spherical vortex beams of high radial degree for enhanced single-beam tweezers , 2013 .

[155]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[156]  Tuncay Alan,et al.  Microfluidic on-demand droplet merging using surface acoustic waves. , 2014, Lab on a chip.

[157]  Leslie Y Yeo,et al.  Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. , 2009, Lab on a chip.

[158]  Hyung Jin Sung,et al.  Acoustothermal heating of polydimethylsiloxane microfluidic system , 2015, Scientific Reports.

[159]  M Fraldi,et al.  Digital holography as 3D tracking tool for assessing acoustophoretic particle manipulation. , 2017, Optics express.

[160]  James Friend,et al.  The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization. , 2010, Lab on a chip.

[161]  W. Soluch,et al.  Pseudo surface acoustic wave dual delay line on 41°YX LiNbO3 for liquid sensors , 2005 .

[162]  Antoine Riaud,et al.  SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[163]  Hyung Jin Sung,et al.  On-Demand Droplet Capture and Release Using Microwell-Assisted Surface Acoustic Waves. , 2017, Analytical chemistry.

[164]  Oliver G. Schmidt,et al.  Surface acoustic wave mediated dielectrophoretic alignment of rolled-up microtubes in microfluidic systems , 2010 .

[165]  S. Soper,et al.  Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps. , 2011, Lab on a chip.

[166]  Nam-Trung Nguyen,et al.  High-throughput micromixers based on acoustic streaming induced by surface acoustic wave , 2011 .

[167]  Samuel J. Raymond,et al.  Continuous flow ultrasonic particle trapping in a glass capillary , 2014 .

[168]  Jongyoon Han,et al.  Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. , 2016, Lab on a chip.

[169]  D. Goodlett,et al.  Surface acoustic wave nebulization device with dual interdigitated transducers improves SAWN-MS performance. , 2016, Journal of mass spectrometry : JMS.

[170]  Xiasheng Guo,et al.  Enriching Nanoparticles via Acoustofluidics. , 2017, ACS nano.

[171]  L. Rayleigh On Waves Propagated along the Plane Surface of an Elastic Solid , 1885 .

[172]  James Friend,et al.  Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies , 2009 .

[173]  J. Eijkel,et al.  Principles and applications of nanofluidic transport. , 2009, Nature nanotechnology.

[174]  Yuliang Xie,et al.  An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls , 2014, Analytical chemistry.

[175]  Georg Siegmund,et al.  The effect of three-wave interference in laser Doppler vibrometry , 2004 .

[176]  Maulik V. Patel,et al.  Cavity-induced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles. , 2014, Lab on a chip.

[177]  Achim Wixforth,et al.  Acoustically driven planar microfluidics , 2003 .

[178]  E. Benes,et al.  Rapid agglutination testing in an ultrasonic standing wave. , 1993, Journal of immunological methods.

[179]  D. Go,et al.  On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis. , 2015, Lab on a chip.

[180]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[181]  James Friend,et al.  Particle concentration and mixing in microdrops driven by focused surface acoustic waves , 2008 .

[182]  Joonhyung Lee,et al.  Sensitive and simultaneous detection of cardiac markers in human serum using surface acoustic wave immunosensor. , 2011, Analytical chemistry.

[183]  S.R. Fang,et al.  SAW focusing by circular-arc interdigital transducers on YZ-LiNbO/sub 3/ , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[184]  Kumuditha M Weerakoon-Ratnayake,et al.  High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique. , 2015, Lab on a chip.

[185]  J. Friend,et al.  Simple, low cost MHz-order acoustomicrofluidics using aluminium foil electrodes. , 2014, Lab on a chip.

[186]  Gareth H McKinley,et al.  Visible light guided manipulation of liquid wettability on photoresponsive surfaces , 2017, Nature Communications.

[187]  J. Sweedler,et al.  Nanofluidics in chemical analysis. , 2010, Chemical Society reviews.

[188]  A. Hassanein,et al.  Nanopumping using carbon nanotubes. , 2006, Nano letters.

[189]  Tuncay Alan,et al.  On-chip droplet production regimes using surface acoustic waves. , 2016, Lab on a chip.

[190]  Jin Ho Jung,et al.  Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves. , 2015, Analytical chemistry.

[191]  Mamat Abdul Hafiz Ultrasonic Range Finder , 2009 .

[192]  Guojun Liu,et al.  A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery , 2006, 56th Electronic Components and Technology Conference 2006.

[193]  Tony Jun Huang,et al.  Experimental and numerical studies on standing surface acoustic wave microfluidics. , 2016, Lab on a chip.

[194]  I Kourakis,et al.  Nonlinear dust-acoustic solitary waves in strongly coupled dusty plasmas. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[195]  Gwo-Bin Lee,et al.  High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. , 2013, Lab on a chip.

[196]  Victor Steinberg,et al.  Continuous particle size separation and size sorting using ultrasound in a microchannel , 2006 .

[197]  James Friend,et al.  Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves , 2009 .

[198]  James Friend,et al.  Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization , 2008, Nanotechnology.

[199]  Abraham P Lee,et al.  LCAT pump optimization for an integrated microfluidic droplet generator , 2015, Microfluidics and nanofluidics.

[200]  A. Nishikata,et al.  Characteristics of leaky surface acoustic waves propagating on LiNbO3 and LiTaO3 substrates , 1995 .

[201]  Amir Sanati-Nezhad,et al.  Microfluidic integrated acoustic waving for manipulation of cells and molecules. , 2016, Biosensors & bioelectronics.

[202]  Colin Campbell,et al.  Surface Acoustic Wave Devices for Mobile and Wireless Communications , 1998 .

[203]  D. White,et al.  Ultrasound in Medicine , 1976, Springer US.

[204]  Leslie Y Yeo,et al.  Interfacial jetting phenomena induced by focused surface vibrations. , 2009, Physical review letters.

[205]  Leslie Y Yeo,et al.  Microfluidic devices for bioapplications. , 2011, Small.

[206]  Achim Wixforth,et al.  Carbon nanotube alignment by surface acoustic waves , 2004 .

[207]  C. Campbell Applications of surface acoustic and shallow bulk acoustic wave devices , 1989, Proc. IEEE.

[208]  Robert E. Brooks,et al.  Time‐Fourier transform by a focusing array of phased surface acoustic wave transducers , 1985 .

[209]  A Winkler,et al.  SAW-based fluid atomization using mass-producible chip devices. , 2015, Lab on a chip.

[210]  Achim Wixforth,et al.  A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes , 2015, Beilstein journal of nanotechnology.

[211]  D. Weitz,et al.  Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. , 2014, Lab on a chip.

[212]  C. Pes,et al.  Mechanical and Magnetic Design of the Superferric Dipoles for the Super-FRS of the FAIR Project , 2016, IEEE Transactions on Applied Superconductivity.

[213]  B. Raeymaekers,et al.  Aligning carbon nanotubes using bulk acoustic waves to reinforce polymer composites , 2014 .

[214]  P. Charette,et al.  Cell detachment and label-free cell sorting using modulated surface acoustic waves (SAWs) in droplet-based microfluidics. , 2014, Lab on a chip.

[215]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[216]  Shaorong Liu,et al.  Ion-Enrichment and Ion-Depletion Effect of Nanochannel Structures , 2004 .

[217]  T. Suga,et al.  Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation , 1999 .

[218]  Peng Li,et al.  Surface acoustic wave microfluidics. , 2013, Lab on a chip.

[219]  Anas Alazzam,et al.  Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). , 2013, Lab on a chip.

[220]  I-Kao Chiang,et al.  Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). , 2011, Lab on a chip.

[221]  Cheng Wang,et al.  Two-dimensional streaming flows driven by sessile semicylindrical microbubbles , 2013, Journal of Fluid Mechanics.

[222]  Andreas Winkler,et al.  Towards efficient surface acoustic wave (SAW)-based microfluidic actuators , 2016 .

[223]  J. Eijkel,et al.  Technologies for nanofluidic systems: top-down vs. bottom-up--a review. , 2005, Lab on a chip.

[224]  Enrico Primo Tomasini,et al.  Laser Doppler Vibrometry: Development of advanced solutions answering to technology's needs , 2006 .

[225]  Babetta L. Marrone,et al.  Droplet translocation by focused surface acoustic waves , 2012 .

[226]  Kendall N Houk,et al.  Accounts of Chemical Research. , 2008, Accounts of chemical research.

[227]  Fran Martin,et al.  Propagation characteristics of harmonic surface skimming bulk waves on ST quartz , 2002 .

[228]  T. Higuchi,et al.  Transducer for high speed and large thrust ultrasonic linear motor using two sandwich-type vibrators , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[229]  C. Campbell,et al.  Longitudinal-mode leaky SAW resonator filters on 64/spl deg/ Y-X lithium niobate , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[230]  K. Shibayama,et al.  Optimum cut for rotated Y-cut LiNbO3crystal used as the substrate of acoustic-surface-wave filters , 1976, Proceedings of the IEEE.

[231]  Jiang Zhe,et al.  Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. , 2011, Lab on a chip.

[232]  Régis Marchiano,et al.  Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. , 2014, Physical review letters.

[233]  Hwan-You Chang,et al.  Recent advances in three‐dimensional multicellular spheroid culture for biomedical research , 2008, Biotechnology journal.

[234]  Double flow reversal in thin liquid films driven by megahertz-order surface vibration , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[235]  John E. Cunningham,et al.  Alignment of particles in microfluidic systems using standing surface acoustic waves , 2008 .

[236]  Ali Mani,et al.  Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. , 2010, Chemical Society reviews.

[237]  Leslie Y Yeo,et al.  Microparticle collection and concentration via a miniature surface acoustic wave device. , 2007, Lab on a chip.

[238]  Robin H. Liu,et al.  Hybridization enhancement using cavitation microstreaming. , 2003, Analytical chemistry.

[239]  J. Friend,et al.  Microscale capillary wave turbulence excited by high frequency vibration. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[240]  J. Friend,et al.  Planar microfluidic drop splitting and merging. , 2015, Lab on a chip.

[241]  David J Collins,et al.  Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. , 2016, Analytical chemistry.

[242]  C. Lim,et al.  A conductive liquid-based surface acoustic wave device. , 2016, Lab on a chip.

[243]  O. Matar,et al.  Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: a quantitative study. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[244]  N. Quirke,et al.  Fluid flow in carbon nanotubes and nanopipes. , 2007, Nature nanotechnology.

[245]  Tuncay Alan,et al.  Surface acoustic wave enabled pipette on a chip. , 2017, Lab on a chip.

[246]  M. Calzada,et al.  Photochemical solution deposition of lead-based ferroelectric films: Avoiding the PbO-excess addition at last , 2008 .

[247]  Hyung Jin Sung,et al.  Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. , 2015, Lab on a chip.

[248]  Achim Wixforth,et al.  Alignment of carbon nanotubes on pre-structured silicon by surface acoustic waves , 2006 .

[249]  Thomas Laurell,et al.  Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems. , 2012, Lab on a chip.

[250]  Erwin Frey,et al.  Statics and dynamics of single DNA molecules confined in nanochannels. , 2005, Physical review letters.

[251]  I. Donald,et al.  Sonar--the story of an experiment. , 1974, Ultrasound in medicine & biology.

[252]  Gwo-Bin Lee,et al.  Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3 , 2006 .

[253]  Robin H. Liu,et al.  Bubble-induced acoustic micromixing. , 2002, Lab on a chip.

[254]  Leslie Y Yeo,et al.  Frequency effects on the scale and behavior of acoustic streaming. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[255]  Nam-Trung Nguyen,et al.  Acoustically induced bubbles in a microfluidic channel for mixing enhancement , 2009 .

[256]  E. A. Ash,et al.  Acoustic Surface‐Wave Beam Diffraction on Anisotropic Substrates , 1971 .

[257]  M. Pereira da Cunha,et al.  Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. , 2006, Biosensors & bioelectronics.

[258]  J. Friend,et al.  Acoustic Nanofluidics via Room‐Temperature Lithium Niobate Bonding: A Platform for Actuation and Manipulation of Nanoconfined Fluids and Particles , 2016 .

[259]  James Friend,et al.  Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells , 2011 .

[260]  J. Reboud,et al.  Acoustic suppression of the coffee-ring effect. , 2015, Soft matter.

[261]  Jin Ho Jung,et al.  Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip. , 2017, Lab on a chip.

[262]  R. White Acoustic and vibration transducers and measurement techniques , 1985 .

[263]  Lung-Ming Fu,et al.  Passive mixers in microfluidic systems: A review , 2016 .

[264]  Leslie Y Yeo,et al.  Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation. , 2014, Lab on a chip.

[265]  D. Goodlett,et al.  Surface Acoustic Wave Nebulization Produces Ions with Lower Internal Energy than Electrospray Ionization , 2012, Journal of The American Society for Mass Spectrometry.

[266]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[267]  G. Kino,et al.  SAW Convolvers Using Focused Interdigital Transducers , 1983, IEEE Transactions on Sonics and Ultrasonics.

[268]  Jun Kondoh,et al.  Study of Surface Acoustic Wave Streaming Phenomenon Based on Temperature Measurement and Observation of Streaming in Liquids , 2007 .

[269]  Xin Cheng,et al.  Preparation and polarization of 0–3 cement based piezoelectric composites , 2006 .

[270]  A. Neild,et al.  Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study. , 2012, Journal of the Acoustical Society of America.

[271]  Hiroshi Goto,et al.  Ultrasonic micromixer for microfluidic systems , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[272]  J. Friend,et al.  Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization , 2014, Respiratory Research.

[273]  Jinhong Guo,et al.  Mechanical Properties Based Particle Separation via Traveling Surface Acoustic Wave. , 2016, Analytical chemistry.

[274]  Yong Qing Fu,et al.  Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate , 2010 .

[275]  R. Datar,et al.  A surface acoustic wave biosensor for interrogation of single tumour cells in microcavities. , 2016, Lab on a chip.

[276]  Leslie Y Yeo,et al.  A scaffold cell seeding method driven by surface acoustic waves. , 2007, Biomaterials.

[277]  G. Harding,et al.  A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. , 2000, Biosensors & bioelectronics.

[278]  T. Franke,et al.  SAW-controlled drop size for flow focusing. , 2013, Lab on a chip.

[279]  H. Sung,et al.  Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet. , 2016, Analytical chemistry.

[280]  R. J. Lang,et al.  Ultrasonic Atomization of Liquids , 1962 .

[281]  K. Nakamura,et al.  A piezoelectric micromotor using in-plane shearing of PZT elements , 2004, IEEE/ASME Transactions on Mechatronics.

[282]  P. Marston Phase-shift expansions for approximate radiation forces on solid spheres in inviscid-acoustic standing waves. , 2017, The Journal of the Acoustical Society of America.

[283]  S. Trolier-McKinstry,et al.  Polarization fatigue in Pb(Zn1/3Nb2/3)O3–PbTiO3 ferroelectric single crystals , 2001 .

[284]  O. Manor,et al.  An extended Landau–Levich model for the dragging of a thin liquid film with a propagating surface acoustic wave , 2016, Journal of Fluid Mechanics.

[285]  S. Menzel,et al.  Investigation of high power effects on Ti/Al and Ta-Si-N/Cu/Ta-Si-N electrodes for SAW devices , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[286]  Theodore C Marentis,et al.  Ultrasonic mixing in microfluidic channels using integrated transducers. , 2004, Analytical chemistry.

[287]  Achim Wixforth,et al.  Acoustic manipulation of small droplets , 2004, Analytical and bioanalytical chemistry.

[288]  Tony Jun Huang,et al.  An acoustofluidic micromixer based on oscillating sidewall sharp-edges. , 2013, Lab on a chip.

[289]  Francesco Costanzo,et al.  Investigation of micromixing by acoustically oscillated sharp-edges. , 2016, Biomicrofluidics.

[290]  Wei Pang,et al.  Localized ultrahigh frequency acoustic fields induced micro-vortices for submilliseconds microfluidic mixing , 2016 .

[291]  Bruce W Drinkwater,et al.  Dynamic-field devices for the ultrasonic manipulation of microparticles. , 2016, Lab on a chip.

[292]  Carl Eckart,et al.  Vortices and Streams Caused by Sound Waves , 1948 .

[293]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[294]  Michael Baudoin,et al.  Selective Manipulation of Microscopic Particles with Precursor Swirling Rayleigh Waves , 2017 .

[295]  M. Cohen Optical Study of Ultrasonic Diffraction and Focusing in Anisotropic Media , 1967 .

[296]  Wai Ho Li,et al.  Uniform mixing in paper-based microfluidic systems using surface acoustic waves. , 2012, Lab on a chip.

[297]  Hiroshi Takeuchi,et al.  SAW propagation loss mechanism in piezoelectric ceramics , 1981 .

[298]  Osamu Matsuda,et al.  Scanning ultrafast Sagnac interferometry for imaging two-dimensional surface wave propagation , 2006 .

[299]  H. Draheim,et al.  Measurement Science and Technology , 1983, 2022 57th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST).

[300]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[301]  Kazuhiko Yamanouchi,et al.  PIEZOELECTRIC LEAKY SURFACE WAVE IN LiNbO3 , 1970 .

[302]  P. J. S. van Capel,et al.  Nonlinear ultrafast acoustics at the nano scale. , 2015, Ultrasonics.

[303]  Proceedings of the IEEE , 2018, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[304]  Yu Wang,et al.  Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics. , 2011, Biomicrofluidics.

[305]  Lin Wang,et al.  A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. , 2014, Lab on a chip.

[306]  Sehyun Shin,et al.  Size-dependent microparticles separation through standing surface acoustic waves , 2011 .

[307]  Z. Siwy,et al.  Nanofluidic Bipolar Transistors , 2008 .

[308]  Anders Kristensen,et al.  Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA , 2008, Nanotechnology.

[309]  Pascal Silberzan,et al.  From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[310]  David J. Collins,et al.  Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields. , 2016, Analytical chemistry.

[311]  A. J. Slobodnik,et al.  New high-frequency high-coupling low-beam-steering cut for acoustic surface waves on LiNbO3 , 1970 .

[312]  Achim Wixforth,et al.  Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber , 2011, Microfluidics and Nanofluidics.

[313]  J. Chyi,et al.  Spatial manipulation of nanoacoustic waves with nanoscale spot sizes. , 2007, Nature nanotechnology.

[314]  Jinjie Shi,et al.  Tunable patterning of microparticles and cells using standing surface acoustic waves. , 2012, Lab on a chip.

[315]  Pierre Thibault,et al.  Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels , 2012, 1211.2967.

[316]  Michael Baudoin,et al.  Anisotropic Swirling Surface Acoustic Waves from Inverse Filtering for On-Chip Generation of Acoustic Vortices , 2015 .

[317]  Othman Sidek,et al.  A review of vibration-based MEMS piezoelectric energy harvesters , 2011 .

[318]  M. Kurosawa,et al.  Ultrasonic linear motor using surface acoustic waves , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[319]  T. Moriizumi,et al.  Experimental Study on Liquid Streaming by SAW , 1989 .

[320]  Bastian E. Rapp,et al.  Surface acoustic wave biosensors: a review , 2008, Analytical and bioanalytical chemistry.

[321]  James Friend,et al.  Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves , 2010 .

[322]  Holger Becker,et al.  Hype, hope and hubris: the quest for the killer application in microfluidics. , 2009, Lab on a chip.

[323]  Enrico Primo Tomasini,et al.  Flow characterization using a laser Doppler vibrometer , 2007 .

[324]  R. Bufalo Thermal effective Lagrangian of generalized electrodynamics in static gravitational fields , 2014, 1412.2209.

[325]  James S. Horwitz,et al.  Miniature valveless ultrasonic pumps and mixers , 2000 .

[326]  G. W. Farnell,et al.  On diffraction and focusing in anisotropic crystals , 1972 .

[327]  James Friend,et al.  Piezoelectric ultrasonic micro/milli-scale actuators , 2009 .

[328]  H. Wohltjen Mechanism of Operation and Design Considerations for Surface Acoustic Wave Device Vapor Sensors. , 1984 .

[329]  T. Uemura,et al.  Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. , 2002, Biomaterials.

[330]  Fabio Beltram,et al.  Acoustic-counterflow microfluidics by surface acoustic waves , 2008 .

[331]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[332]  James Friend,et al.  Direct visualization of surface acoustic waves along substrates using smoke particles , 2007 .

[333]  Christina E. Dyllick,et al.  Analytical and Bioanalytical Chemistry , 2002 .

[334]  Leslie Y Yeo,et al.  Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. , 2010, Lab on a chip.

[335]  C. Grigoropoulos,et al.  Nanofluidics in carbon nanotubes , 2007 .

[336]  Richard M. White,et al.  DIRECT PIEZOELECTRIC COUPLING TO SURFACE ELASTIC WAVES , 1965 .

[337]  Rasim Guldiken,et al.  Active density-based separation using standing surface acoustic waves , 2012 .

[338]  K. Uchino,et al.  Loss mechanisms in piezoelectrics: how to measure different losses separately , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[339]  N. Setter,et al.  Preparation and characterization of (K0.5Na0.5)NbO3 ceramics , 2006 .

[340]  James Friend,et al.  UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration. , 2012, Lab on a chip.

[341]  David Jenkins,et al.  Laser Doppler vibrometry for evaluating the piezoelectric coefficient d33 on thin film , 2006 .

[342]  Jin Ho Jung,et al.  Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. , 2016, Lab on a chip.

[343]  M. Dresselhaus,et al.  Carbon nanotubes : synthesis, structure, properties, and applications , 2001 .

[344]  J. Eggers Nonlinear dynamics and breakup of free-surface flows , 1997 .

[345]  J. Friend,et al.  Using laser Doppler vibrometry to measure capillary surface waves on fluid-fluid interfaces. , 2010, Biomicrofluidics.

[346]  Thomas Brooke Benjamin,et al.  The stability of the plane free surface of a liquid in vertical periodic motion , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[347]  James Friend,et al.  Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics , 2009 .

[348]  James Friend,et al.  Cell agglomeration in the wells of a 24-well plate using acoustic streaming. , 2017, Lab on a chip.

[349]  Daniel Ahmed,et al.  Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[350]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[351]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .