Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes.

Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermocapillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. We carry out detailed experimental and theoretical studies to reveal all of the essential attributes of the underlying thermophysical phenomena. We demonstrate use of the purified arrays in transistors that achieve mobilities exceeding 1,000 cm(2) V(-1) s(-1) and on/off switching ratios of ∼10,000 with current outputs in the milliamp range. Simple logic gates built using such devices represent the first steps toward integration into more complex circuits.

[1]  M. Itkis,et al.  Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. , 2003, Journal of the American Chemical Society.

[2]  Albert Lin,et al.  Current Scaling in Aligned Carbon Nanotube Array Transistors With Local Bottom Gating , 2010, IEEE Electron Device Letters.

[3]  Eric Pop,et al.  Thermal dissipation and variability in electrical breakdown of carbon nanotube devices , 2010, 1005.4350.

[4]  John A. Rogers,et al.  Sources of Hysteresis in Carbon Nanotube Field‐Effect Transistors and Their Elimination Via Methylsiloxane Encapsulants and Optimized Growth Procedures , 2012 .

[5]  Marc J. Assael,et al.  Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7 , 2005 .

[6]  N. Tsutsumi,et al.  Measurement of thermal diffusivity for polymer film by flash radiometry , 1988 .

[7]  J. Wortman,et al.  Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .

[8]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[9]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[10]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[11]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[12]  John A Rogers,et al.  Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. , 2007, Nano letters.

[13]  W. Orts,et al.  Film Thickness Dependent Thermal Expansion in Ultrathin Poly(methyl methacrylate) Films on Silicon , 1995 .

[14]  Jonathan R Felts,et al.  Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip , 2012, Nanotechnology.

[15]  Houjin Huang,et al.  Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. , 2006, The journal of physical chemistry. B.

[16]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[17]  Patricia M. Nieva,et al.  Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures , 2000 .

[18]  Ming Zheng,et al.  Enrichment of single chirality carbon nanotubes. , 2007, Journal of the American Chemical Society.

[19]  Mobility in semiconducting carbon nanotubes at finite carrier density. , 2005, Nano letters.

[20]  Byung-Gook Park,et al.  Pentacene OTFTs with PVA gate insulators on a flexible substrate , 2004 .

[21]  M. Asheghi,et al.  Modeling and Data for Thermal Conductivity of Ultrathin Single-Crystal SOI Layers at High Temperature , 2006, IEEE Transactions on Electron Devices.

[22]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[23]  Viktor Malyarchuk,et al.  Experimental and computational studies of phase shift lithography with binary elastomeric masks , 2006 .

[24]  E. Pop,et al.  Multiband Mobility in Semiconducting Carbon Nanotubes , 2009, IEEE Electron Device Letters.

[25]  Stephen Y. Chou,et al.  Imprint lithography with sub-10 nm feature size and high throughput , 1997 .

[26]  Yonggang Huang,et al.  Quantitative thermal imaging of single-walled carbon nanotube devices by scanning Joule expansion microscopy. , 2012, ACS nano.

[27]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[28]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[29]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[30]  H. Wong,et al.  Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes , 2009, IEEE Transactions on Nanotechnology.

[31]  John A. Rogers,et al.  Effect of variations in diameter and density on the statistics of aligned array carbon-nanotube field effect transistors , 2012 .

[32]  Eric Pop,et al.  The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes , 2008, Nanotechnology.

[33]  Li Zhang,et al.  Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. , 2007, Journal of the American Chemical Society.

[34]  H. Dai,et al.  Short channel field-effect transistors from highly enriched semiconducting carbon nanotubes , 2012, Nano Research.

[35]  A. Green,et al.  Nearly Single‐Chirality Single‐Walled Carbon Nanotubes Produced via Orthogonal Iterative Density Gradient Ultracentrifugation , 2011, Advanced materials.

[36]  T. L. Wright,et al.  Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters , 2006, Journal of Microelectromechanical Systems.

[37]  Kenneth E. Goodson,et al.  Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition , 1999 .

[38]  C. Rutherglen,et al.  Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes , 2008 .

[39]  G. Eesley,et al.  Transient thermoreflectance from thin metal films , 1986, Annual Meeting Optical Society of America.

[40]  Ming Zheng,et al.  DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes , 2009, Nature.

[41]  Eric Pop,et al.  Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts , 2011, Nature Nanotechnology.

[42]  E. Pop,et al.  Avalanche-induced current enhancement in semiconducting carbon nanotubes. , 2008, Physical review letters.

[43]  I. A. Blech,et al.  Effects of humidity on stress in thin silicon dioxide films , 1982 .

[44]  Min Tae Kim,et al.  Influence of substrates on the elastic reaction of films for the microindentation tests , 1996 .

[45]  Junyan Dai,et al.  Molecular Glass Resists for High-Resolution Patterning , 2006 .

[46]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[47]  Y. Higo,et al.  Effects of humidity on Young's modulus in poly(methyl methacrylate) , 2002 .

[48]  H. Kataura,et al.  Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography , 2011, Nature communications.

[49]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[50]  A. Beck,et al.  Lattice conductivities of single-crystal and polycrystalline materials at mantle pressures and temperatures , 1978 .

[51]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[52]  A. Majumdar,et al.  Scanning Joule expansion microscopy at nanometer scales , 1998 .

[53]  John A Rogers,et al.  Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. , 2005, Journal of the American Chemical Society.

[54]  H. Klauk,et al.  High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. , 2007, Nano letters.

[55]  Hai Wei,et al.  Linear increases in carbon nanotube density through multiple transfer technique. , 2011, Nano letters.

[56]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[57]  Stanislaus S. Wong,et al.  Demonstration of Diameter-Selective Reactivity in the Sidewall Ozonation of SWNTs by Resonance Raman Spectroscopy , 2004 .

[58]  Henri Happy,et al.  80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes , 2009 .

[59]  Xue Lin,et al.  Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer , 2010 .

[60]  K. Balasubramanian,et al.  A Selective Electrochemical Approach to Carbon Nanotube Field-Effect Transistors , 2004 .

[61]  Chongwu Zhou,et al.  Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. , 2010, ACS nano.

[62]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[63]  Phaedon Avouris,et al.  Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. , 2008, ACS nano.

[64]  John A. Rogers,et al.  Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors† , 2007 .

[65]  Subhasish Mitra,et al.  CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. , 2009, Nano letters.

[66]  Yasumasa Okada,et al.  Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K , 1984 .

[67]  M. A. Wahab,et al.  Electroluminescence in aligned arrays of single-wall carbon nanotubes with asymmetric contacts. , 2012, ACS nano.

[68]  S. Michel,et al.  A new method for the simultaneous determination of surface tension and density of polymer melts , 1999 .

[69]  Chongwu Zhou,et al.  Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. , 2011, ACS nano.

[70]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[71]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[72]  John A Rogers,et al.  Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. , 2009, Nano letters.