Adaptive Discrete-Time Sliding Mode Impedance Control of a Piezoelectric Microgripper

Delicate interaction control is a crucial issue for automated microsystems dedicated to microobjects handling. This paper proposes a new approach to regulate both position and contact force of a piezoelectric-bimorph microgripper for micromanipulation and microassembly applications. The methodology is developed based on the framework of a discrete-time sliding mode generalized impedance control with adaptive switching gain. One unique feature lies in its easy implementation based on a second-order dynamic model, whereas neither a state observer nor a hysteresis/creep model of the system is required. The stability of the control system is proved in theory, which ensures the tracking performance in the presence of model uncertainties and disturbances. The effectiveness of the scheme is validated by experimental investigations on grasp operation of a microgear. Results show that the approach is capable of accomplishing precision position/force control simultaneously. Moreover, the influences of control gains and target impedance parameters on the tracking performance are addressed, and the achievement of balance between the position and force control accuracy is discussed.

[1]  Neville Hogan,et al.  Stable execution of contact tasks using impedance control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[2]  Lei Qiu,et al.  Design of a New Micro-Gripper Based on Piezoelectric Bimorphs , 2011 .

[3]  O. Kaynak,et al.  On the stability of discrete-time sliding mode control systems , 1987 .

[4]  K. Furuta Sliding mode control of a discrete system , 1990 .

[5]  Homayoun Seraji,et al.  Force Tracking in Impedance Control , 1997, Int. J. Robotics Res..

[6]  Haibo Huang,et al.  Robotic Cell Injection System With Position and Force Control: Toward Automatic Batch Biomanipulation , 2009, IEEE Transactions on Robotics.

[7]  Y. Yong,et al.  Atomic force microscopy with a 12-electrode piezoelectric tube scanner. , 2010, The Review of scientific instruments.

[8]  Tariq Rahman,et al.  The application of discrete-time adaptive impedance control to rehabilitation robot manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[9]  Hakan Elmali,et al.  Implementation of sliding mode control with perturbation estimation (SMCPE) , 1996, IEEE Trans. Control. Syst. Technol..

[10]  M. Tarokh A discrete-time adaptive control scheme for robot manipulators , 1990, J. Field Robotics.

[11]  G. K. Ananthasuresh,et al.  Miniature Compliant Grippers With Vision-Based Force Sensing , 2010, IEEE Transactions on Robotics.

[12]  Robert G. Bonitz,et al.  Internal force-based impedance control for cooperating manipulators , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[13]  S. P. Chan,et al.  Generalized impedance control of robot for assembly tasks requiring compliant manipulation , 1996, IEEE Trans. Ind. Electron..

[14]  Quan Zhou,et al.  Hybrid Microassembly Combining Robotics and Water Droplet Self-Alignment , 2010, IEEE Transactions on Robotics.

[15]  P. Lutz,et al.  Nonlinear modeling and estimation of force in a piezoelectric cantilever , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[16]  Bijan Shirinzadeh,et al.  Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation , 2008 .

[17]  Peter C. Y. Chen,et al.  Force Sensing and Control in Micromanipulation , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[18]  Andrew A. Goldenberg,et al.  An approach to sliding-mode based control , 1995, IEEE Trans. Robotics Autom..

[19]  G. Monsees,et al.  Adaptive switching gain for a discrete-time sliding mode controller , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[20]  Li Zhang,et al.  High-rate tunable ultrasonic force regulated nanomachining lithography with an atomic force microscope , 2012, Nanotechnology.

[21]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[22]  Hiroya Seki,et al.  Modeling And Impedance Control Of A Piezoelectric Bimorph Microgripper , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  Seul Jung,et al.  Force Tracking Impedance Control for Robot Manipulators with an Unknown Environment: Theory, Simulation, and Experiment , 2001, Int. J. Robotics Res..

[24]  Philippe Lutz,et al.  Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench , 2010 .

[25]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[26]  Yassine Haddab,et al.  A microgripper using smart piezoelectric actuators , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[27]  Max Q.-H. Meng,et al.  Impedance control with adaptation for robotic manipulations , 1991, IEEE Trans. Robotics Autom..

[28]  Seul Jung,et al.  Force tracking impedance control of robot manipulators under unknown environment , 2004, IEEE Transactions on Control Systems Technology.

[29]  Ben S. Cazzolato,et al.  A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators , 2010 .

[30]  Xinhan Huang,et al.  A piezoelectric bimorph micro-gripper with micro-force sensing , 2005, 2005 IEEE International Conference on Information Acquisition.

[31]  Wen-Hong Zhu,et al.  Force control: A bird's eye view , 1998 .

[32]  Qingsong Xu A new method of force estimation in piezoelectric cantilever-based microgripper , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[33]  Arianna Menciassi,et al.  Force sensing microinstrument for measuring tissue properties and pulse in microsurgery , 2003 .

[34]  Yu Sun,et al.  Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback , 2008 .

[35]  Jian-Xin Xu,et al.  Discrete-Time Output Integral Sliding-Mode Control for a Piezomotor-Driven Linear Motion Stage , 2008, IEEE Transactions on Industrial Electronics.

[36]  Leang-San Shieh,et al.  Digital controller design for Bouc–Wen model with high-order hysteretic nonlinearities through approximated scalar sign function , 2011, Int. J. Syst. Sci..

[37]  Michaël Gauthier,et al.  Principle of a Submerged Freeze Gripper for Microassembly , 2008, IEEE Transactions on Robotics.

[38]  Seiji Chonan,et al.  Soft-handling gripper driven by piezoceramic bimorph strips , 1996 .

[39]  Kok Kiong Tan,et al.  Design, Modeling, and Control of Piezoelectric Actuators for Intracytoplasmic Sperm Injection , 2007, IEEE Transactions on Control Systems Technology.

[40]  Micky Rakotondrabe,et al.  Development and Force/Position Control of a New Hybrid Thermo-Piezoelectric MicroGripper Dedicated to Micromanipulation Tasks , 2011, IEEE Transactions on Automation Science and Engineering.

[41]  Qingsong Xu,et al.  Model Predictive Discrete-Time Sliding Mode Control of a Nanopositioning Piezostage Without Modeling Hysteresis , 2012, IEEE Transactions on Control Systems Technology.

[42]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..

[43]  Qingze Zou,et al.  High-speed force load in force measurement in liquid using scanning probe microscope. , 2012, The Review of scientific instruments.

[44]  Qingsong Xu,et al.  Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse , 2013, IEEE Transactions on Industrial Electronics.