Probability in quantum computation and quantum computational logics: a survey

Quantum computation and quantum computational logics give rise to some non-standard probability spaces that are interesting from a formal point of view. In this framework, events represent quantum pieces of information ( qubits , quregisters , mixtures of quregisters ), while operations on events are identified with quantum logic gates (which correspond to dynamic reversible quantum processes). We investigate the notion of Shi–Aharonov quantum computational algebra . This structure plays the role for quantum computation that is played by σ-complete Boolean algebras in classical probability theory.

[1]  Roberto Giuntini,et al.  The Algebraic Structure of an Approximately Universal System of Quantum Computational Gates , 2009 .

[2]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[3]  Gianpiero Cattaneo,et al.  Quantum computational structures , 2004 .

[4]  M. L. Dalla Chiara,et al.  Quantum Computational Logics. A Survey , 2003 .

[5]  Francesco Paoli,et al.  MV-Algebras and Quantum Computation , 2006, Stud Logica.

[6]  Stan Gudder,et al.  Quantum Computational Logic , 2003 .

[7]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[10]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[11]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[12]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[13]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[14]  Roberto Giuntini,et al.  Logics from Quantum Computation , 2005 .

[15]  Roberto Giuntini,et al.  Entanglement as a Semantic Resource , 2010 .

[16]  D. Aharonov A Simple Proof that Toffoli and Hadamard are Quantum Universal , 2003, quant-ph/0301040.