Generalized and Extended Subspace Algorithms for Error Correction with Quantized DFT Codes

Discrete Fourier transform (DFT) codes have been used to provide robustness against errors and erasures in various applications. This paper focuses on improving error localization of the Bose-Chaudhuri-Hocquenghem (BCH) DFT codes. First, we analyze how the subspace-based error localization outperforms the coding-theoretic one. Then, we propose an extension of the subspace-based error localization, based on additional syndrome, that improves the existing one and is naturally suitable for rate-adaptive distributed source coding (DSC). Further, we propose a new generic subspace-based algorithm to decode BCH-DFT codes. The proposed approach generalizes the encoding and decoding of this important class of DFT codes. It introduces many different decoding matrices for a DFT code; this diversity is then used to diminish the effect of the quantization noise and thus to improve the decoding. Finally, the extended and generalized approaches are combined to maximize the decoding gain. Simulation results demonstrate the capability of the proposed algorithms to perform significantly better than the existing subspace-based error localization, in the presence of quantization noise.

[1]  Mojtaba Vaezi,et al.  Distributed Lossy Source Coding Using Real-Number Codes , 2012, 2012 IEEE Vehicular Technology Conference (VTC Fall).

[2]  Mojtaba Vaezi,et al.  Extended subspace error localization for rate-adaptive distributed source coding , 2013, 2013 IEEE International Symposium on Information Theory.

[3]  Pierre Duhamel,et al.  Joint Source-Channel Coding Using Real BCH Codes for Robust Image Transmission , 2007, IEEE Transactions on Image Processing.

[4]  Bernhard G. Bodmann,et al.  Burst Erasures and the Mean-Square Error for Cyclic Parseval Frames , 2011, IEEE Transactions on Information Theory.

[5]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[6]  Anamitra Makur,et al.  Improved Coding-Theoretic and Subspace-Based Decoding Algorithms for a Wider Class of DCT and DST Codes , 2010, IEEE Transactions on Signal Processing.

[7]  George A. F. Seber,et al.  A matrix handbook for statisticians , 2007 .

[8]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  Christine Guillemot,et al.  Frame-theoretic analysis of DFT codes with erasures , 2004, IEEE Transactions on Signal Processing.

[10]  Werner Henkel,et al.  OFDM and analog RS / BCH codes , .

[11]  Mojtaba Vaezi,et al.  Wyner-Ziv Coding in the Real Field Based on BCH-DFT Codes , 2013, ArXiv.

[12]  Bernd Girod,et al.  Rate-adaptive codes for distributed source coding , 2006, Signal Process..

[13]  Georgios B. Giannakis,et al.  Complex-field coding for OFDM over fading wireless channels , 2003, IEEE Trans. Inf. Theory.

[14]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[15]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[16]  R. Blahut Algebraic Codes for Data Transmission , 2002 .

[17]  G. Robert Redinbo Correcting DCT Codes With Laurent Euclidean Algorithm and Syndrome Extension , 2013, IEEE Transactions on Signal Processing.

[18]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[19]  Mojtaba Vaezi,et al.  Least squares solution for error correction on the real field using quantized DFT codes , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[20]  Aline Roumy,et al.  Rate-adaptive codes for the entire Slepian-Wolf region and arbitrarily correlated sources , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[21]  Christine Guillemot,et al.  Subspace algorithms for error localization with quantized DFT codes , 2004, IEEE Transactions on Communications.

[22]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[23]  Christine Guillemot,et al.  Characterization of a Class of Error Correcting Frames for Robust Signal Transmission over Wireless Communication Channels , 2005, EURASIP J. Adv. Signal Process..

[24]  T. Marshall,et al.  Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem , 1984, IEEE J. Sel. Areas Commun..

[25]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[26]  Mojtaba Vaezi,et al.  Systematic DFT Frames: Principle, Eigenvalues Structure, and Applications , 2013, IEEE Transactions on Signal Processing.

[27]  R. A. McDonald,et al.  Noiseless Coding of Correlated Information Sources , 1973 .