New anisotropic fluid spheres from embedding

[1]  A. Banerjee,et al.  Role of pressure anisotropy on relativistic compact stars , 2017, 1710.10463.

[2]  Y. K. Gupta,et al.  A new model for spherically symmetric charged compact stars of embedding class 1 , 2016, 1605.01268.

[3]  S. Maharaj,et al.  A family of Finch and Skea relativistic stars , 2016, 1612.08523.

[4]  P. Bhar,et al.  Solutions of the Einstein’s field equations with anisotropic pressure compatible with cold star model , 2016 .

[5]  Y. K. Gupta,et al.  A new exact anisotropic solution of embedding class one , 2016 .

[6]  S. Maharaj,et al.  Anisotropic charged core envelope star , 2016, 1612.08525.

[7]  K. Singh,et al.  A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars , 2016, 1607.05971.

[8]  Y. K. Gupta,et al.  Generalised model for anisotropic compact stars , 2016, 1607.05582.

[9]  Y. K. Gupta,et al.  A new model for spherically symmetric anisotropic compact star , 2016 .

[10]  Y. K. Gupta,et al.  Modelling of anisotropic compact stars of embedding class one , 2016, 1604.00531.

[11]  L. Herrera,et al.  Cracking of general relativistic anisotropic polytropes , 2015, 1509.07143.

[12]  M. H. Murad,et al.  Some new Wyman–Leibovitz–Adler type static relativistic charged anisotropic fluid spheres compatible to self-bound stellar modeling , 2015 .

[13]  S. Maharaj,et al.  Compact stars with quadratic equation of state , 2015, 1512.08994.

[14]  M. H. Murad,et al.  Anisotropic charged stellar models in Generalized Tolman IV spacetime , 2015 .

[15]  M. H. Murad Some analytical models of anisotropic strange stars , 2015 .

[16]  B. S. Ratanpal,et al.  RELATIVISTIC STELLAR MODEL ADMITTING A QUADRATIC EQUATION OF STATE , 2013, 1307.1439.

[17]  M. Dey,et al.  Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii , 2013, 1303.1956.

[18]  S. Duarte,et al.  MASSIVE COMPACT STARS AS QUARK STARS , 2014, 1407.4704.

[19]  G. Bordbar,et al.  Computation of the structure of a magnetized strange quark star , 2011, 1103.1250.

[20]  J. Silk,et al.  Dark matter, neutron stars, and strange quark matter. , 2010, Physical review letters.

[21]  F. Weber Strange quark matter and compact stars , 2004, astro-ph/0407155.

[22]  M. Gleiser,et al.  Anisotropic Stars II: Stability , 2003, gr-qc/0303077.

[23]  K. Lake All static spherically symmetric perfect-fluid solutions of Einstein’s equations , 2002, gr-qc/0209104.

[24]  T. Harko,et al.  Maximum mass-radius ratios for charged compact general relativistic objects , 2001, gr-qc/0107011.

[25]  M. Gleiser,et al.  Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.

[26]  E. V. Heuvel,et al.  Is SAX J1808.4-3658 a Strange Star ? , 1999, hep-ph/9905356.

[27]  I. Bombaci,et al.  Strange stars with realistic quark vector interaction and phenomenological density-dependent scalar potential [Phys. Lett. B 438 (1998) 123] , 1998, astro-ph/9810065.

[28]  L. Herrera,et al.  Local anisotropy in self-gravitating systems , 1997 .

[29]  I. Bombaci Observational evidence for strange matter in compact objects from the x-ray burster 4U 1820-30 , 1997 .

[30]  L. Herrera,et al.  Tidal forces and fragmentation of self-gravitating compact objects , 1994 .

[31]  L. Herrera Cracking of self-gravitating compact objects , 1992 .

[32]  R. Schaeffer,et al.  Strange quark stars , 1986 .

[33]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[34]  M. Kohler,et al.  Zentralsymmetrische statische Schwerefelder mit Räumen der Klasse 1 , 1965 .

[35]  D. Sharp,et al.  RELATIVISTIC EQUATIONS FOR ADIABATIC, SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE , 1964 .

[36]  H. Buchdahl General Relativistic Fluid Spheres , 1959 .

[37]  J. Jeans The Motions of Stars in a Kapteyn-Universe , 1922 .