3D printing of solid-state zinc-ion microbatteries with ultrahigh capacity and high reversibility for wearable integration design

[1]  Oliver G. Schmidt,et al.  Flexible MXene films for batteries and beyond , 2022, Carbon Energy.

[2]  Oliver G. Schmidt,et al.  On‐Chip Batteries for Dust‐Sized Computers (Adv. Energy Mater. 13/2022) , 2022, Advanced Energy Materials.

[3]  Oliver G. Schmidt,et al.  A Sub‐Square‐Millimeter Microbattery with Milliampere‐Hour‐Level Footprint Capacity , 2022 .

[4]  Zijian Zheng,et al.  2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries , 2022, Chemical Engineering Journal.

[5]  Xiaocong Tian,et al.  3D Printing for Solid‐State Energy Storage , 2021, Small methods.

[6]  G. Wallace,et al.  3D‐Printed Wearable Electrochemical Energy Devices , 2021, Advanced Functional Materials.

[7]  G. Cao,et al.  A universal strategy towards 3D printable nanomaterial inks for superior cellular high-loading battery electrodes , 2021, Journal of Materials Chemistry A.

[8]  Zhong‐Shuai Wu,et al.  High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of −40 ºC , 2021 .

[9]  K. Pister,et al.  Stencil-printed Lithium-ion micro batteries for IoT applications , 2021 .

[10]  Kang Jiang,et al.  Fabrications of High-Performance Planar Zinc-Ion Microbatteries by Engraved Soft Templates. , 2021, Small.

[11]  Jingyu Sun,et al.  3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti3C2 MXene Ink. , 2021, ACS nano.

[12]  Zhengnan Tian,et al.  Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency , 2021 .

[13]  D. Pech,et al.  Porous RuOxNySz Electrodes for Microsupercapacitors and Microbatteries with Enhanced Areal Performance , 2020 .

[14]  M. Ramuz,et al.  High performance stretchable Li-ion microbattery , 2020 .

[15]  Jingyu Sun,et al.  3D Printing of a V8C7–VO2 Bifunctional Scaffold as an Effective Polysulfide Immobilizer and Lithium Stabilizer for Li–S Batteries , 2020, Advanced materials.

[16]  Jingyu Sun,et al.  Universal in Situ Crafted MOx-MXene Heterostructures as Heavy and Multifunctional Hosts for 3D-Printed Li-S Batteries. , 2020, ACS nano.

[17]  Jingyu Sun,et al.  Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries , 2020, Advanced Functional Materials.

[18]  Yuyan Shao,et al.  Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes , 2020, Advanced Functional Materials.

[19]  Jingsheng Cai,et al.  Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li–S batteries with high rate capability and areal capacity , 2020 .

[20]  G. Shen,et al.  A Flexible Concentric Circle Structured Zinc‐Ion Micro‐Battery with Electrodeposited Electrodes , 2020 .

[21]  Zhong‐Shuai Wu,et al.  Zinc based micro‐electrochemical energy storage devices: Present status and future perspective , 2020 .

[22]  Zhiqiang Niu,et al.  Flexible and tailorable quasi‐solid‐state rechargeable Ag/Zn microbatteries with high performance , 2020 .

[23]  Yifei Yuan,et al.  Three-Dimensional Microbatteries beyond Lithium Ion , 2020, Matter.

[24]  Ying Yang,et al.  Redirected Zn Electrodeposition by an Anti‐Corrosion Elastic Constraint for Highly Reversible Zn Anodes , 2020, Advanced Functional Materials.

[25]  Kun Zhou,et al.  3D printing of cellular materials for advanced electrochemical energy storage and conversion. , 2020, Nanoscale.

[26]  Yan Yu,et al.  Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability , 2020 .

[27]  Jiujun Zhang,et al.  Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries , 2020, Advanced Functional Materials.

[28]  Jiajie Liang,et al.  3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery , 2020, Chemical Engineering Journal.

[29]  Xiaoyu Shi,et al.  Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety , 2019, National science review.

[30]  Sizhe Wang,et al.  Converting a thick electrode into vertically aligned “Thin electrodes” by 3D-Printing for designing thickness independent Li-S cathode , 2020 .

[31]  Kevin Huang,et al.  A High Capacity Bilayer Cathode for Aqueous Zn-ion Batteries. , 2019, ACS nano.

[32]  Xiaobo Ji,et al.  Insights into Three-dimensional Dendrite-free Zinc Anode on Copper Mesh with Zinc-oriented Polyacrylamide Electrolyte Additive. , 2019, Angewandte Chemie.

[33]  Weizhen Zeng,et al.  An Ultrahigh Energy Density Quasi‐Solid‐State Zinc Ion Microbattery with Excellent Flexibility and Thermostability , 2019, Advanced Energy Materials.

[34]  Jun Ma,et al.  High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing , 2019, Electrochimica Acta.

[35]  Zhiqiang Niu,et al.  A Flexible Quasi‐Solid‐State Bifunctional Device with Zinc‐Ion Microbattery and Photodetector , 2019, ChemElectroChem.

[36]  Xiaoting Lin,et al.  High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes , 2019, Nano Energy.

[37]  Konstantinos G. Dassios,et al.  3D printed electrochemical energy storage devices , 2019, Journal of Materials Chemistry A.

[38]  Michael Rottmayer,et al.  High Capacity Rate Capable Aerosol Jet Printed Li‐Ion Battery Cathode , 2019, Advanced Engineering Materials.

[39]  Dou Zhang,et al.  3D‐Printed Microelectrodes with a Developed Conductive Network and Hierarchical Pores toward High Areal Capacity for Microbatteries , 2018, Advanced Materials Technologies.

[40]  Christophe Lethien,et al.  Sputtered LiMn1.5Ni0.5O4 thin films for Li-ion micro-batteries with high energy and rate capabilities , 2018, Energy Storage Materials.

[41]  Xueliang Sun,et al.  Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. , 2018, ACS applied materials & interfaces.

[42]  T. Christiansen,et al.  High-power lithium-ion microbatteries from imprinted 3D electrodes of sub-10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte , 2018, Nano Energy.

[43]  Cheng Liu,et al.  All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance , 2018, Nano Energy.

[44]  Chaowei Li,et al.  High-performance flexible all-solid-state aqueous rechargeable Zn–MnO2 microbatteries integrated with wearable pressure sensors , 2018 .

[45]  Di Zhang,et al.  Generalized 3D Printing of Graphene-Based Mixed-Dimensional Hybrid Aerogels. , 2018, ACS nano.

[46]  Boyang Liu,et al.  Extrusion‐Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes , 2018, Advanced materials.

[47]  F. Kang,et al.  High performance, environmentally benign and integratable Zn//MnO2 microbatteries , 2018 .

[48]  Chee Kai Chua,et al.  Emerging 3D‐Printed Electrochemical Energy Storage Devices: A Critical Review , 2017 .

[49]  Yinzhu Jiang,et al.  Pseudocapacitance-Enhanced Li-Ion Microbatteries Derived by a TiN@TiO2 Nanowire Anode , 2017 .

[50]  Tian Li,et al.  Graphene Oxide‐Based Electrode Inks for 3D‐Printed Lithium‐Ion Batteries , 2016, Advanced materials.

[51]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.