A Hamilton-Jacobi-Bellman approach to optimal trade execution

The optimal trade execution problem is formulated in terms of a mean-variance tradeoff, as seen at the initial time. The mean-variance problem can be embedded in a linear-quadratic (LQ) optimal stochastic control problem. A semi-Lagrangian scheme is used to solve the resulting nonlinear Hamilton-Jacobi-Bellman (HJB) PDE. This method is essentially independent of the form for the price impact functions. Provided a strong comparison property holds, we prove that the numerical scheme converges to the viscosity solution of the HJB PDE. Numerical examples are presented in terms of the efficient trading frontier and the trading strategy. The numerical results indicate that in some cases there are many different trading strategies which generate almost identical efficient frontiers.

[1]  F. Lillo,et al.  Econophysics: Master curve for price-impact function , 2003, Nature.

[2]  George Labahn,et al.  A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..

[3]  G. Barles,et al.  Numerical Methods in Finance: Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory , 1997 .

[4]  Jean-Philippe Bouchaud,et al.  More Statistical Properties of Order Books and Price Impact , 2002, cond-mat/0210710.

[5]  Julian Lorenz,et al.  Adaptive Arrival Price; ; Trading; Algorithmic Trading III. Precision control, execution , 2007 .

[6]  Hua He,et al.  Dynamic Trading Policies with Price Impact , 2001 .

[7]  X. Zhou,et al.  CONTINUOUS‐TIME MEAN‐VARIANCE PORTFOLIO SELECTION WITH BANKRUPTCY PROHIBITION , 2005 .

[8]  Dawn Hunter Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .

[9]  J. Wang,et al.  Maximal Use of Central Differencing for Hamilton-Jacobi-Bellman PDEs in Finance , 2008, SIAM J. Numer. Anal..

[10]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[11]  Robert Ferstenberg,et al.  Execution Risk , 2006 .

[12]  Zhuliang Chen,et al.  A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation , 2007, SIAM J. Sci. Comput..

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  D. Bertsimas,et al.  Optimal control of execution costs , 1998 .

[15]  R. Almgren,et al.  Direct Estimation of Equity Market Impact , 2005 .

[16]  Jianming Xia MEAN–VARIANCE PORTFOLIO CHOICE: QUADRATIC PARTIAL HEDGING , 2005 .

[17]  Xun Li,et al.  Dynamic mean-variance portfolio selection with borrowing constraint , 2010, Eur. J. Oper. Res..

[18]  P. Forsyth,et al.  Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .

[19]  Andrew E. B. Lim,et al.  Dynamic Mean-Variance Portfolio Selection with No-Shorting Constraints , 2001, SIAM J. Control. Optim..

[20]  Gur Huberman,et al.  Price Manipulation and Quasi-Arbitrage , 2004 .

[21]  Lihua Bai,et al.  Dynamic mean-variance problem with constrained risk control for the insurers , 2008, Math. Methods Oper. Res..

[22]  Alexander Fadeev,et al.  Optimal execution for portfolio transactions , 2006 .

[23]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .

[24]  Richard Kershaw,et al.  Finance , 1892, Handbooks in operations research and management science.

[25]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[26]  Peter A. Forsyth,et al.  Optimal trade execution: A mean quadratic variation approach , 2012 .

[27]  G. Barles,et al.  A STRONG COMPARISON RESULT FOR THE BELLMAN EQUATION ARISING IN STOCHASTIC EXIT TIME CONTROL PROBLEMS AND ITS APPLICATIONS , 1998 .

[28]  Wang Wei-xing Continuous-time Mean-variance Portfolio Selection , 2010 .

[29]  Rama Cont Encyclopedia of quantitative finance , 2010 .

[30]  Julian Lorenz,et al.  Bayesian Adaptive Trading with a Daily Cycle , 2006 .

[31]  Julian Lorenz,et al.  Optimal Trading Algorithms: Portfolio Transactions, Multiperiod Portfolio Selection, and Competitive Online Search , 2008 .

[32]  Alexander Schied,et al.  Risk Aversion and the Dynamics of Optimal Liquidation Strategies in Illiquid Markets , 2008 .

[33]  Suleyman Basak,et al.  Dynamic Mean-Variance Asset Allocation , 2009 .

[34]  Julian Lorenz,et al.  Adaptive Arrival Price , 2007 .

[35]  Huyên Pham,et al.  A model of optimal portfolio selection under liquidity risk and price impact , 2006, Finance Stochastics.