The basics of epithelial-mesenchymal transition.

The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.

[1]  E. Neilson,et al.  Biomarkers for epithelial-mesenchymal transitions. , 2009, The Journal of clinical investigation.

[2]  M. Nieto,et al.  Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. , 2009, The Journal of clinical investigation.

[3]  W. Schiemann,et al.  Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism. , 2008, Carcinogenesis.

[4]  L. Banks,et al.  Cloning and functional analysis of the promoter region of the human Disc large gene. , 2008, Gene.

[5]  B. Olsen,et al.  Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. , 2008, Molecular biology of the cell.

[6]  W. Schiemann,et al.  Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-beta through a PGE2-dependent mechanisms. , 2008, Carcinogenesis.

[7]  C. Rohrmeier,et al.  Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn's disease , 2008, Inflammatory bowel diseases.

[8]  S. Tsukita,et al.  Loss of occludin affects tricellular localization of tricellulin. , 2008, Molecular biology of the cell.

[9]  Cameron P Bracken,et al.  MicroRNAs as regulators of epithelial-mesenchymal transition , 2008, Cell cycle.

[10]  Kohei Miyazono,et al.  Snail is required for TGFβ-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells , 2008, Journal of Cell Science.

[11]  G. Goodall,et al.  The microRNA-200 Family Regulates Epithelial to Mesenchymal Transition , 2008, TheScientificWorldJournal.

[12]  R. Kalluri,et al.  The role of endothelial-to-mesenchymal transition in cancer progression , 2008, British Journal of Cancer.

[13]  Robert A. Weinberg,et al.  Twisted epithelial–mesenchymal transition blocks senescence , 2008, Nature Cell Biology.

[14]  George Poste,et al.  The "seed and soil" hypothesis revisited. , 2008, The Lancet. Oncology.

[15]  Pamela A. Hoodless,et al.  Slug is a direct Notch target required for initiation of cardiac cushion cellularization , 2008, The Journal of cell biology.

[16]  D. Peeper,et al.  Deregulating EMT and senescence: double impact by a single twist. , 2008, Cancer cell.

[17]  R. Maestro,et al.  Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. , 2008, Cancer cell.

[18]  Wei Wang,et al.  Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. , 2008, Cell stem cell.

[19]  E. Fearon,et al.  The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes , 2008, Oncogene.

[20]  Robert A. Weinberg,et al.  Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. , 2008, Developmental cell.

[21]  Marianne Bronner-Fraser,et al.  A gene regulatory network orchestrates neural crest formation , 2008, Nature Reviews Molecular Cell Biology.

[22]  M. Korpal,et al.  The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2* , 2008, Journal of Biological Chemistry.

[23]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[24]  Larissa Ivanova,et al.  Mesenchymal transition in kidney collecting duct epithelial cells. , 2008, American journal of physiology. Renal physiology.

[25]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[26]  Sun-Mi Park,et al.  The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. , 2008, Genes & development.

[27]  U. Hofmann,et al.  Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse , 2008, Development.

[28]  M. Dvoráková,et al.  Melanocyte fate in neural crest is triggered by Myb proteins through activation of c-kit , 2007, Cellular and Molecular Life Sciences.

[29]  R. Kalluri,et al.  Fibroblasts Derive from Hepatocytes in Liver Fibrosis via Epithelial to Mesenchymal Transition* , 2007, Journal of Biological Chemistry.

[30]  Xueli Yuan,et al.  Endothelial-to-mesenchymal transition contributes to cardiac fibrosis , 2007, Nature Medicine.

[31]  R. Kalluri,et al.  Mechanisms of metastasis: Epithelial‐to‐mesenchymal transition and contribution of tumor microenvironment , 2007, Journal of cellular biochemistry.

[32]  Alicia Zhou,et al.  Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers , 2007, Proceedings of the National Academy of Sciences.

[33]  J. Zavadil,et al.  Transforming Growth Factor-β and microRNA:mRNA Regulatory Networks in Epithelial Plasticity , 2007, Cells Tissues Organs.

[34]  Jianguo Song EMT or apoptosis: a decision for TGF-beta. , 2007, Cell research.

[35]  Anne E Carpenter,et al.  The Spemann organizer gene, Goosecoid, promotes tumor metastasis , 2006, Proceedings of the National Academy of Sciences.

[36]  C. Simón,et al.  Implantation of the Human Embryo: Research Lines and Models , 2006, Gynecologic and Obstetric Investigation.

[37]  Zhi-Ren Liu,et al.  P68 RNA Helicase Mediates PDGF-Induced Epithelial Mesenchymal Transition by Displacing Axin from β-Catenin , 2006, Cell.

[38]  D. Sheppard,et al.  Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix , 2006, Proceedings of the National Academy of Sciences.

[39]  Brian Bierie,et al.  Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer , 2006, Nature Reviews Cancer.

[40]  R. Weinberg,et al.  Exploring a new twist on tumor metastasis. , 2006, Cancer research.

[41]  Raghu Kalluri,et al.  The epithelial–mesenchymal transition: new insights in signaling, development, and disease , 2006, The Journal of cell biology.

[42]  K. Flanders,et al.  Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. , 2006, Cytokine & growth factor reviews.

[43]  J. Thiery,et al.  Complex networks orchestrate epithelial–mesenchymal transitions , 2006, Nature Reviews Molecular Cell Biology.

[44]  K. Verschueren,et al.  Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells. , 2006, International journal of oncology.

[45]  J. Rossant,et al.  Fibroblast growth factor receptor 1 (Fgfr1) is not essential for lens fiber differentiation in mice. , 2006, Molecular vision.

[46]  B. Swalla,et al.  Nodal signaling and the evolution of deuterostome gastrulation , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[47]  D. Albertson,et al.  Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability , 2005, Nature.

[48]  E. Hay,et al.  The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[49]  E. Hay,et al.  Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. , 2005, Cells, tissues, organs.

[50]  R. Huang,et al.  Linking epithelial-mesenchymal transition to the well-known polarity protein Par6. , 2005, Developmental cell.

[51]  R. Kalluri,et al.  Bone Morphogenic Protein-7 Induces Mesenchymal to Epithelial Transition in Adult Renal Fibroblasts and Facilitates Regeneration of Injured Kidney* , 2005, Journal of Biological Chemistry.

[52]  J. Zavadil,et al.  TGF-beta and epithelial-to-mesenchymal transitions. , 2005, Oncogene.

[53]  R. Weinberg,et al.  The evolving portrait of cancer metastasis. , 2005, Cold Spring Harbor symposia on quantitative biology.

[54]  E. Hay,et al.  Transforming Growth Factor-β Signaling during Epithelial-Mesenchymal Transformation: Implications for Embryogenesis and Tumor Metastasis , 2005, Cells Tissues Organs.

[55]  T. Burstyn-Cohen,et al.  Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition , 2004, Development.

[56]  K. Flanders,et al.  Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial–mesenchymal transition of lens epithelium in mice , 2004, Laboratory Investigation.

[57]  S. Ramaswamy,et al.  Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis , 2004, Cell.

[58]  H. Beug,et al.  Mechanisms in Epithelial Plasticity and Metastasis: Insights from 3D Cultures and Expression Profiling , 2002, Journal of Mammary Gland Biology and Neoplasia.

[59]  R. Kalluri,et al.  Epithelial-mesenchymal transition and its implications for fibrosis. , 2003, The Journal of clinical investigation.

[60]  Jean Paul Thiery,et al.  Epithelial-mesenchymal transitions in development and pathologies. , 2003, Current opinion in cell biology.

[61]  R. Kalluri,et al.  Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. , 2003, American journal of physiology. Renal physiology.

[62]  Molenaar Jc,et al.  [From the library of the Netherlands Journal of Medicine. Rudolf Virchow: Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre; 1858]. , 2003 .

[63]  R. Kalluri,et al.  BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury , 2003, Nature Medicine.

[64]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[65]  L. Nelles,et al.  Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. , 2003, American journal of human genetics.

[66]  J. Massagué,et al.  Mechanisms of TGF-beta signaling from cell membrane to the nucleus. , 2003, Cell.

[67]  Junwei Yang,et al.  Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. , 2003, The Journal of clinical investigation.

[68]  Mina J Bissell,et al.  The organizing principle: microenvironmental influences in the normal and malignant breast. , 2002, Differentiation; research in biological diversity.

[69]  Junwei Yang,et al.  Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. , 2002, The Journal of clinical investigation.

[70]  R. Behringer,et al.  Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. , 2002, Developmental cell.

[71]  M. Rastaldi,et al.  Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. , 2002, Kidney international.

[72]  B. Hogan,et al.  Organogenesis: Molecular Mechanisms Of Tubulogenesis , 2002, Nature Reviews Genetics.

[73]  D. Sela-Donenfeld,et al.  Localized BMP4-noggin interactions generate the dynamic patterning of noggin expression in somites. , 2002, Developmental biology.

[74]  John Calvin Reed,et al.  Yeast and apoptosis , 2002, Nature Reviews Molecular Cell Biology.

[75]  A. Knecht,et al.  Induction of the neural crest: a multigene process , 2002, Nature Reviews Genetics.

[76]  C. Stern,et al.  A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo , 2002, Mechanisms of Development.

[77]  J. Thiery Epithelial–mesenchymal transitions in tumour progression , 2002, Nature Reviews Cancer.

[78]  G. Moreno-Bueno,et al.  Correlation of Snail expression with histological grade and lymph node status in breast carcinomas , 2002, Oncogene.

[79]  E. Hay,et al.  DIRECT EVIDENCE FOR A ROLE OF β‐CATENIN/LEF‐1 SIGNALING PATHWAY IN INDUCTION OF EMT , 2002, Cell biology international.

[80]  R. Kalluri,et al.  Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. , 2002, Kidney international.

[81]  R. Schulte‐Hermann,et al.  Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-beta1 and Ha-Ras: steps towards invasiveness. , 2002, Journal of cell science.

[82]  M. Nieto,et al.  The snail superfamily of zinc-finger transcription factors , 2002, Nature Reviews Molecular Cell Biology.

[83]  J. Downward,et al.  Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis , 2002, The Journal of Cell Biology.

[84]  R. Mayor,et al.  Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. , 2002, Developmental biology.

[85]  J. Downward,et al.  Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. , 2002, The Journal of cell biology.

[86]  Junwei Yang,et al.  Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. , 2002, Journal of the American Society of Nephrology : JASN.

[87]  H. Moses,et al.  Integrin (cid:1) 1 Signaling Is Necessary for Transforming Growth Factor- (cid:1) Activation of p38MAPK and Epithelial Plasticity* , 2022 .

[88]  R. Foisner,et al.  E-cadherin regulates cell growth by modulating proliferation-dependent β-catenin transcriptional activity , 2001, The Journal of cell biology.

[89]  R. Knuechel,et al.  Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[90]  C. Stern,et al.  Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo. , 2001, Development.

[91]  J. Rossant,et al.  FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. , 2001, Developmental cell.

[92]  G. Berx,et al.  The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. , 2001, Molecular cell.

[93]  B. Gumbiner,et al.  E-Cadherin Suppresses Cellular Transformation by Inhibiting β-Catenin Signaling in an Adhesion-Independent Manner , 2001, The Journal of cell biology.

[94]  P J Catalano,et al.  Molecular predictors of survival after adjuvant chemotherapy for colon cancer. , 2001, The New England journal of medicine.

[95]  H. Moses,et al.  Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. , 2001, The Journal of biological chemistry.

[96]  A. Balmain,et al.  TGF-beta signaling in tumor suppression and cancer progression. , 2001, Nature genetics.

[97]  N. Kamata,et al.  Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. , 2001, Oral oncology.

[98]  H. Moses,et al.  Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. , 2001, Molecular biology of the cell.

[99]  T. Jessell,et al.  Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. , 2000, Development.

[100]  Kevin Truong,et al.  Cadherins in embryonic and neural morphogenesis , 2000, Nature Reviews Molecular Cell Biology.

[101]  A. Schulze,et al.  Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. , 2000, Genes & development.

[102]  K. Miyazono TGF-β signaling by Smad proteins , 2000 .

[103]  B. Schaffhauser,et al.  Epithelial Mesenchymal Transition by C-Fos Estrogen Receptor Activation Involves Nuclear Translocation of β-Catenin and Upregulation of β-Catenin/Lymphoid Enhancer Binding Factor-1 Transcriptional Activity , 2000, The Journal of cell biology.

[104]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[105]  齋藤 敦 Disruption of E-cadherin-mediated cell adhesion systems in gastric cancers in young patients , 2000 .

[106]  K. Miyazono TGF-beta signaling by Smad proteins. , 2000, Cytokine & growth factor reviews.

[107]  C. Heldin,et al.  TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. , 1999, Journal of cell science.

[108]  S. Hirohashi,et al.  Disruption of E‐Cadherin‐mediated Cell Adhesion Systems in Gastric Cancers in Young Patients , 1999, Japanese journal of cancer research : Gann.

[109]  Allan Bradley,et al.  Requirement for Wnt3 in vertebrate axis formation , 1999, Nature Genetics.

[110]  H. Beug,et al.  TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis , 1998, Current Biology.

[111]  S. Hirohashi Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. , 1998, The American journal of pathology.

[112]  J. Massagué,et al.  TGF-β singaling and cancer: structural and functional consequences of mutations in Smads , 1998 .

[113]  J. Lipschutz Molecular development of the kidney: a review of the results of gene disruption studies. , 1998, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[114]  J. Massagué,et al.  TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads. , 1998, Molecular medicine today.

[115]  J. Aplin,et al.  Anchorage in the developing placenta: an overlooked determinant of pregnancy outcome? , 1998, Human fertility.

[116]  S. Shah,et al.  Misexpression of chick Vg1 in the marginal zone induces primitive streak formation. , 1997, Development.

[117]  R. Kalluri,et al.  Early role of Fsp1 in epithelial-mesenchymal transformation. , 1997, American journal of physiology. Renal physiology.

[118]  Y. Okada Volume expansion-sensing outward-rectifier Cl- channel: fresh start to the molecular identity and volume sensor. , 1997, The American journal of physiology.

[119]  R. Krumlauf,et al.  Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. , 1997, Development.

[120]  J. Collignon,et al.  nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. , 1997, Development.

[121]  R. Krumlauf,et al.  Axis duplication and anterior identity in the mouse embryo. , 1997, Cold Spring Harbor symposia on quantitative biology.

[122]  K. Miyazono,et al.  TGF-beta signalling from cell membrane to nucleus through SMAD proteins. , 1997, Nature.

[123]  J. Rossant,et al.  FGF signaling in mouse gastrulation and anteroposterior patterning. , 1997, Cold Spring Harbor symposia on quantitative biology.

[124]  H. Beug,et al.  TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. , 1996, Genes & development.

[125]  Allan Balmain,et al.  TGFβ1 Inhibits the Formation of Benign Skin Tumors, but Enhances Progression to Invasive Spindle Carcinomas in Transgenic Mice , 1996, Cell.

[126]  S. Hirohashi,et al.  E‐Cadherin Gene Mutations in Signet Ring Cell Carcinoma of the Stomach , 1996, Japanese journal of cancer research : Gann.

[127]  R. Kalluri,et al.  Possible mechanisms of renal fibrosis. , 1996, Contributions to nephrology.

[128]  J. Collignon,et al.  Relationship between asymmetric nodal expression and the direction of embryonic turning , 1996, Nature.

[129]  P. Ekblom Genetics of kidney development. , 1996, Current opinion in nephrology and hypertension.

[130]  J. Aplin,et al.  Epithelial-mesenchymal transition during trophoblast differentiation. , 1996, Acta anatomica.

[131]  F. Strutz,et al.  Identification and characterization of a fibroblast marker: FSP1 , 1995, The Journal of cell biology.

[132]  E. Hay An overview of epithelio-mesenchymal transformation. , 1995, Acta anatomica.

[133]  W. Birchmeier,et al.  Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. , 1994, Biochimica et biophysica acta.

[134]  G. Dressler,et al.  Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. , 1993, Development.

[135]  H. Schwarz,et al.  Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion , 1992, Cell.

[136]  E. Hay Role of cell-matrix contacts in cell migration and epithelial-mesenchymal transformation. , 1990, Cell differentiation and development : the official journal of the International Society of Developmental Biologists.

[137]  R. Chiquet‐Ehrismann,et al.  Epithelial-mesenchymal interactions in the developing kidney lead to expression of tenascin in the mesenchyme , 1987, The Journal of cell biology.

[138]  G. Edelman,et al.  Early epochal maps of two different cell adhesion molecules. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[139]  J. Thiery,et al.  Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation. , 1982, Developmental biology.

[140]  Agnes W. O'Brien Seed and Soil , 1905, The Elementary School Teacher.

[141]  R. Virchow,et al.  Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre , 1861 .