SMOS: The Challenging Sea Surface Salinity Measurement From Space

Soil Moisture and Ocean Salinity, European Space Agency, is the first satellite mission addressing the challenge of measuring sea surface salinity from space. It uses an L-band microwave interferometric radiometer with aperture synthesis (MIRAS) that generates brightness temperature images, from which both geophysical variables are computed. The retrieval of salinity requires very demanding performances of the instrument in terms of calibration and stability. This paper highlights the importance of ocean salinity for the Earth's water cycle and climate; provides a detailed description of the MIRAS instrument, its principles of operation, calibration, and image-reconstruction techniques; and presents the algorithmic approach implemented for the retrieval of salinity from MIRAS observations, as well as the expected accuracy of the obtained results.

[1]  Adriano Camps,et al.  Extended Ocean Salinity Error Budget Analysis within the SMOS Mission , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  Adriano Camps,et al.  Noise maps in aperture synthesis radiometric images due to cross‐correlation of visibility noise , 2003 .

[4]  Adriano Camps,et al.  Receiver specifications of the MIRAS demonstrator , 2001, SPIE Remote Sensing.

[5]  C. Ruf,et al.  Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth , 1988 .

[6]  Adriano Camps,et al.  Simulated SMOS Levels 2 and 3 Products: The Effect of Introducing ARGO Data in the Processing Chain and Its Impact on the Error Induced by the Vicinity of the Coast , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[8]  Bertrand Chapron,et al.  Modeling Sun Glitter at L-Band for Sea Surface Salinity Remote Sensing With SMOS , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Manuel Martín-Neira,et al.  The Flat Target Transformation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Joaquim Ballabrera-Poy,et al.  Linear and non-linear T- S models for the eastern North Atlantic from Argo data: Role of surface salinity observations , 2009 .

[11]  Jacqueline Boutin,et al.  An Iterative Convergence Algorithm to Retrieve Sea Surface Salinity from SMOS L-band Radiometric Measurements , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[12]  P. Napier,et al.  The very large array: Design and performance of a modern synthesis radio telescope , 1983, Proceedings of the IEEE.

[13]  W. Marsden I and J , 2012 .

[14]  Adriano Camps,et al.  EXTENSION OF THE CLEAN TECHNIQUE TO THE MICROWAVE IMAGING OF CONTINUOUS THERMAL SOURCES BY MEANS OF APERTURE SYNTHESIS RADIOMETERS , 1998 .

[15]  R. Murtugudde,et al.  On the potential impact of sea surface salinity observations on ENSO predictions , 2002 .

[16]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[17]  Ignasi Corbella,et al.  SMOS Calibration , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Adriano Camps,et al.  Sun effects in 2-D aperture synthesis radiometry imaging and their cancelation , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Bertrand Chapron,et al.  A model of sea-foam thickness distribution for passive microwave remote sensing applications , 2003 .

[20]  Adriano Camps,et al.  Improved Image Reconstruction Algorithms for Aperture Synthesis Radiometers , 2008, IEEE Trans. Geosci. Remote. Sens..

[21]  David M. Le Vine,et al.  Accurate L-band measurements of the dielectric constant of seawater , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Philippe Waldteufel,et al.  Apodization functions for 2-D hexagonally sampled synthetic aperture imaging radiometers , 2002, IEEE Trans. Geosci. Remote. Sens..

[23]  Carolina Gabarró,et al.  Toward an Optimal SMOS Ocean Salinity Inversion Algorithm , 2009, IEEE Geoscience and Remote Sensing Letters.

[24]  Luis Enrique,et al.  The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Jacqueline Boutin,et al.  Surface Salinity Retrieved from SMOS Measurements over the Global Ocean: Imprecisions Due to Sea Surface Roughness and Temperature Uncertainties , 2004 .

[26]  Y. Kerr,et al.  Selecting an optimal configuration for the Soil Moisture and Ocean Salinity mission , 2003 .

[27]  Thomas J. Jackson,et al.  Satellite Remote Sensing Missions for Monitoring Water, Carbon, and Global Climate Change , 2010, Proc. IEEE.

[28]  J. C. Good,et al.  Aperture synthesis for microwave radiometers in space , 1983 .

[29]  Simon Yueh,et al.  Error sources and feasibility for microwave remote sensing of ocean surface salinity , 2001, IEEE Trans. Geosci. Remote. Sens..

[30]  David M. Le Vine,et al.  Chapter 19 Sea surface salinity: Toward an operational remote-sensing system , 2000 .

[31]  Jacqueline Boutin,et al.  Issues About Retrieving Sea Surface Salinity in Coastal Areas From SMOS Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part II: Application to SMOS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Bertrand Chapron,et al.  Demonstration of ocean surface salinity microwave measurements from space using AMSR‐E data over the Amazon plume , 2009 .

[34]  Eric Anterrieu,et al.  A resolving matrix approach for synthetic aperture imaging radiometers , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part I: General Characteristics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Adriano Camps,et al.  The visibility function in interferometric aperture synthesis radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Roger Lukas,et al.  The mixed layer of the western equatorial Pacific Ocean , 1991 .

[38]  G. Lagerloef,et al.  Satellite Measurements of Salinity , 2001 .

[39]  Niels Skou,et al.  L-band radiometers measuring salinity from space: atmospheric propagation effects , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Christophe Maes,et al.  Salinity barrier layer and onset of El Niño in a Pacific coupled model , 2002 .

[41]  Adriano Camps,et al.  The correlation of visibility noise and its impact on the radiometric resolution of an aperture synthesis radiometer , 2000, IEEE Trans. Geosci. Remote. Sens..

[42]  Adriano Camps,et al.  Angular resolution of two‐dimensional, hexagonally sampled interferometric radiometers , 1998 .

[43]  Adriano Camps,et al.  Radiometric sensitivity computation in aperture synthesis interferometric radiometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[44]  N. Skou Faraday rotation and L band oceanographic measurements , 2003 .

[45]  Philippe Waldteufel,et al.  Ionospheric effects for L-band 2-D interferometric radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Wallace Broeker,et al.  The Great Ocean Conveyor , 1991 .

[47]  Simon Yueh,et al.  The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge , 2008 .

[48]  Calvin T. Swift,et al.  Considerations for Microwave Remote Sensing of Ocean-Surface Salinity , 1983, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Adriano Camps,et al.  Impact of antenna errors on the radiometric accuracy of large aperture synthesis radiometers , 1997 .

[50]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977 .

[51]  Adriano Camps,et al.  On-board phase and modulus calibration of large aperture synthesis radiometers: study applied to MIRAS , 1996, IEEE Trans. Geosci. Remote. Sens..

[52]  M. Vall-llossera,et al.  Retrieving sea surface salinity with multiangular L‐band brightness temperatures: Improvement by spatiotemporal averaging , 2005 .

[53]  Alan B. Tanner,et al.  Calibration of a synthetic aperture radiometer , 1993, IEEE Trans. Geosci. Remote. Sens..

[54]  Adriano Camps,et al.  The use of a semi-empirical emissivity model for a rough estimation of sea surface salinity from an airborne microwave radiometer , 2008 .

[55]  Adriano Camps,et al.  The determination of surface salinity with the European SMOS space mission , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Ignasi Corbella,et al.  Specification of channel filters for an interferometric radiometer , 2001 .

[57]  Jacqueline Boutin,et al.  Overview of the SMOS Sea Surface Salinity Prototype Processor , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Adriano Camps,et al.  Brightness-Temperature Retrieval Methods in Synthetic Aperture Radiometers , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Adriano Camps,et al.  The processing of hexagonally sampled signals with standard rectangular techniques: application to 2-D large aperture synthesis interferometric radiometers , 1997, IEEE Trans. Geosci. Remote. Sens..

[60]  D. T. Farley,et al.  Digital-correlation techniques in radio science. , 1973 .

[61]  Min Zhang,et al.  Theoretical study of the small slope approximation for ocean polarimetric thermal emission , 1999, IEEE Trans. Geosci. Remote. Sens..

[62]  Camps Carmona,et al.  Aplication of Interferometric Radiometry to Earth Observation , 1996 .

[63]  Albert Aguasca,et al.  Seawater dielectric permittivity model from measurements at L band , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[64]  V. Caselles,et al.  L‐band sea surface emissivity: Preliminary results of the WISE‐2000 campaign and its application to salinity retrieval in the SMOS mission , 2003 .

[65]  Jacqueline Boutin,et al.  Influence of sea surface emissivity model parameters at L-band for the estimation of salinity , 2002 .

[66]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[67]  Jacqueline Boutin,et al.  Vertical Variability of Near-Surface Salinity in the Tropics: Consequences for L-Band Radiometer Calibration and Validation , 2010 .

[68]  Yann Kerr,et al.  A strip adaptive processing approach for the SMOS space mission , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[69]  Ramon Villarino,et al.  The emissivity of foam-covered water surface at L-band: theoretical modeling and experimental results from the FROG 2003 field experiment , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[70]  Manuel Martín-Neira,et al.  Polarimetric mode of MIRAS , 2002, IEEE Trans. Geosci. Remote. Sens..

[71]  Adriano Camps,et al.  A new empirical model of sea surface microwave emissivity for salinity remote sensing , 2004 .

[72]  M. Vall-llossera,et al.  Determination of the sea surface emissivity at L‐band and application to SMOS salinity retrieval algorithms: Review of the contributions of the UPC‐ICM , 2008 .

[73]  Simon Yueh,et al.  Sea surface salinity from space: Science goals and measurement approach , 2003 .

[74]  Jacqueline Boutin,et al.  Issues concerning the sea emissivity modeling at L band for retrieving surface salinity , 2003 .

[75]  Adriano Camps,et al.  Corrections To "Radiometric Sensitivity Computation In Aperture Synthesis Interferometric Radiometry" , 1998, IEEE Trans. Geosci. Remote. Sens..

[76]  Mojib Latif,et al.  Tropical Pacific/Atlantic Ocean interactions at multi‐decadal time scales , 2001 .