Enumeration Complexity of Poor Man's Propositional Dependence Logic

Dependence logics are a modern family of logics of independence and dependence which mimic notions of database theory. In this paper, we aim to initiate the study of enumeration complexity in the field of dependence logics and thereby get a new point of view on enumerating answers of database queries. Consequently, as a first step, we investigate the problem of enumerating all satisfying teams of formulas from a given fragment of propositional dependence logic. We distinguish between restricting the team size by arbitrary functions and the parametrised version where the parameter is the team size. We show that a polynomial delay can be reached for polynomials and otherwise in the parametrised setting we reach FPT delay. However, the constructed enumeration algorithm with polynomial delay requires exponential space. We show that an incremental polynomial delay algorithm exists which uses polynomial space only. Negatively, we show that for the general problem without restricting the team size, an enumeration algorithm running in polynomial space cannot exist.

[1]  Heribert Vollmer,et al.  Complexity Results for Modal Dependence Logic , 2010, Studia Logica.

[2]  Ronald Fagin,et al.  A normal form for relational databases that is based on domains and keys , 1981, TODS.

[3]  Ronald Fagin,et al.  Inclusion dependencies and their interaction with functional dependencies , 1982, PODS.

[4]  Marco A. Casanova,et al.  Towards a sound view integration methodology , 1983, PODS.

[5]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[6]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[7]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[8]  Jonni Virtema,et al.  Complexity of Propositional Independence and Inclusion Logic , 2015, MFCS.

[9]  Jarmo Kontinen Coherence and Computational Complexity of Quantifier-free Dependence Logic Formulas , 2013, Stud Logica.

[10]  Heribert Vollmer,et al.  Dependence Logic: Theory and Applications (Dagstuhl Seminar 13071) , 2013, Dagstuhl Reports.

[11]  Johannes Ebbing,et al.  Complexity of Model Checking for Modal Dependence Logic , 2011, SOFSEM.

[12]  Jonni Virtema,et al.  Complexity of Propositional Logics in Team Semantic , 2018, TOCL.

[13]  Pietro Galliani,et al.  On Dependence Logic , 2013, Johan van Benthem on Logic and Information Dynamics.

[14]  Heribert Vollmer,et al.  Expressivity and Complexity of Dependence Logic , 2016, Dependence Logic.

[15]  Arne Meier,et al.  Paradigms for Parameterized Enumeration , 2013, Theory of Computing Systems.

[16]  Yann Strozecki,et al.  Enumeration complexity and matroid decomposition , 2010 .

[17]  Arne Meier,et al.  Parameterized Enumeration for Modification Problems , 2015, LATA.

[18]  Benny Kimelfeld,et al.  Efficiently Enumerating Minimal Triangulations , 2016, PODS.

[19]  P. S. Aleksandrov,et al.  An introduction to the theory of groups , 1960 .

[20]  M. AdelsonVelskii,et al.  AN ALGORITHM FOR THE ORGANIZATION OF INFORMATION , 1963 .

[21]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[22]  P. Boas Machine models and simulations , 1991 .

[23]  Vladimir Gurvich,et al.  On the Complexity of Some Enumeration Problems for Matroids , 2005, SIAM J. Discret. Math..

[24]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[25]  Edith Hemaspaandra The Complexity of Poor Man's Logic , 2001, J. Log. Comput..

[26]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[27]  Peter van Emde Boas,et al.  Machine Models and Simulation , 1990, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[28]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[29]  Petr A. Golovach,et al.  An Incremental Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets , 2013, ICALP.

[30]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[31]  Jonni Virtema,et al.  Polyteam Semantics , 2018, LFCS.

[32]  Lauri Hella,et al.  Model Checking and Validity in Propositional and Modal Inclusion Logics , 2016, MFCS.