Trigonal Na3Li(MoO4)2⋅6H2O – a new many-phonon SRS molybdate crystal offering numerous nonlinear-laser interactions: several cascaded lasing (χ(3) ↔ χ(2)) effects and more than sesqui-octave Stokes and anti-Stokes comb generation under one-micron picosecond pumping

Trigonal Na3Li(MoO4)2⋅6H2O was found to be an attractive, simultaneously χ(2)- and χ(3)-active nonlinear optical crystal. We investigated its basic optical properties and observed several nonlinear effects, namely many-phonon SRS, almost two-octave Stokes and anti-Stokes lasing combs, SHG, THG, and efficient cascaded (χ(3) ↔ χ(2))-generation, as well as SRS arising from nonlinear interaction of two different χ(3)-active vibrations. All recorded nonlinear-lasing components were identified and attributed to SRS-promoting vibration modes. A short review of nonlinear-laser molybdates is given.

[1]  J. Findeisen,et al.  Efficient Picosecond PbWo/sub 4/ And Two-wavelength KGd(Wo/sub 1/)/sub 2/ Raman Lasers In The IR And Visible , 1999, IEEE Journal of Quantum Electronics.

[2]  A. A. Pavlyuk,et al.  Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal — a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation , 1997 .

[3]  Alexander A. Kaminskii,et al.  Laser crystals and ceramics: recent advances , 2007 .

[4]  A. A. Pavlyuk,et al.  New Optical Effects in Acentric LaBGeO5 and β′‐Gd2(MoO4)3 Laser Crystal Hosts Having High χ(2)and χ(3) Nonlinear Susceptibilities , 1996 .

[5]  A. M. Prokhorov,et al.  Stimulated Raman scattering of laser radiation in Raman crystals , 1999 .

[6]  P. Dekker,et al.  High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4. , 2008, Optics express.

[7]  M. Ma̧czka,et al.  Polarised IR and Raman spectra of non-centrosymmetric Na3Li(SeO4)2.6H2O crystal--a new Raman laser material. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  A. Kaminskiĭ,et al.  Crystalline Lasers: Physical Processes and Operating Schemes , 1996 .

[9]  Helen M. Pask,et al.  The design and operation of solid-state Raman lasers , 2003 .

[10]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[11]  Y. Chen,et al.  Efficient 1521-nm Nd:GdVO4 Raman laser. , 2004, Optics letters.

[12]  A. A. Pavlyuk,et al.  Efficient multiwave Stokes and anti-Stokes operation of a Raman parametric laser based on a tetragonal NaLa(MoO4)2 crystal , 1996 .

[13]  H. Eichler,et al.  High-order picosecond SRS and self-SRS generation in Nd3+-doped CaMoO4, SrMoO4, and SrWO4 laser crystals , 2002 .

[14]  James C. Barnes,et al.  High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals , 2000 .

[15]  P. Becker,et al.  Monoclinic LaBO2MoO4:Nd3+ – a new SE- and (χ(2)+χ(3))-active crystal for multifunctional lasers , 2008 .

[16]  J. Piper,et al.  Crystalline Raman Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  H. Eichler,et al.  Trigonal Na3Li(SeO4)2·6H2O crystal – a novel SRS‐active material with high Raman gain coefficient , 2007 .

[18]  V. A. Lisinetskii,et al.  All solid-state diode-pumped Raman laser with self-frequency conversion , 1999 .

[19]  H. Eichler,et al.  Observation of many-phonon stimulated Raman scattering and related cascaded nonlinear-laser effects in monoclinic LaBO2MoO4 single crystals , 2008 .

[20]  L. Bohatý Dynamisches Verfahren zur Messung von elektostriktiven und elektrooptischen Effekten. Beispiel: Tinkalkonit Na2B4O5(OH)4 · 3 H2O , 1982 .

[21]  A. Miller,et al.  Enhancement of electrooptic effects at wavelengths in the proximity of electronic resonances. , 1971, Applied optics.

[22]  Hans Joachim Eichler,et al.  Tetragonal YPO4 – a novel SRS-active crystal , 2008 .

[23]  P. Tarte,et al.  Vibrational studies of molybdates, tungstates and related compounds—I: New infrared data and assignments for the scheelite-type compounds XIIMoO4 and XIIWO4 , 1972 .

[24]  Hans Joachim Eichler,et al.  High-order stimulated Raman scattering in CVD single crystal diamond , 2007 .

[25]  H. Eichler,et al.  New nonlinear-laser effects in crystalline fine-grained ceramics based on cubic Sc2O3 and Lu2O3 oxides: second and third harmonic generation, and cascaded self-sum-frequency mixing in UV spectral region , 2008 .

[26]  Yaochun Shen Principles of nonlinear optics , 1984 .

[27]  Nobuo Takeuchi,et al.  Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser , 2001 .

[28]  Hans Joachim Eichler,et al.  Multiple Stokes and anti-stokes picosecond generation, cw laser action at wavelengths of two stimulated-emission channels 4F3/2→ 4I11/2 and 4F3/2→ 4I13/2, and nanosecond self-SRS lasing in undoped and nd3+-doped tetragonal PbMoO4 crystals , 2001 .

[29]  J. Scott Lattice Perturbations in CaWO4 and CaMoO4 , 1968 .

[30]  Marvin J. Weber,et al.  Handbook of Laser Wavelengths , 1998 .

[31]  B. Edĺen The Refractive Index of Air , 1966 .

[32]  J. Scott,et al.  Longitudinal and Transverse Optical Lattice Vibrations in Quartz , 1967 .

[33]  S. Bagayev,et al.  Efficient Stimulated Raman Scattering in Tetragonal Laser Crystalline Hosts NaBi(MoO 4) 2 and NaBi(WO 4) 2 , 1995 .

[34]  Hans Joachim Eichler,et al.  Nonlinear-laser effects in NH4H2PO4 (ADP) and ND4D2PO4 (DADP) single crystals: almost two-octave multi-wavelength Stokes and anti-Stokes combs, cascaded lasing in UV and visible ranges with the involving of the second and third harmonic generation , 2008 .

[35]  Y. Zavartsev,et al.  Diode pumped 500-picosecond Nd:GdVO4 Raman laser , 2004 .

[36]  M. Ma̧czka,et al.  Non‐centrosymmetric molybdates CsLiMoO4 and CsLiMoO4·⅓H2O: crystal growth, polymorphism, efficient Stokes and anti‐Stokes generation and cascaded self‐frequency [χ(3)(SRS) → χ(2)(SFM)] conversion effects , 2005 .

[37]  F. Lefaucheux Laser crystals. Their physics and properties, par A. A. Kaminskii, 1981 , 1984 .

[38]  W. P. Mason,et al.  Piezoelectric Crystals and Their Applications to Ultrasonics , 1951 .

[39]  Alexei V Sokolov,et al.  Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses. , 2007, Optics letters.

[40]  M. Ma̧czka,et al.  Lattice dynamics and phase transitions in KAl(MoO4)2, RbAl(MoO4)2 and CsAl(MoO4)2 layered crystals , 2004 .

[41]  P. Tarte,et al.  Vibrational studies of molybdates, tungstates and related compounds—II: New Raman data and assignments for the scheelite-type compounds , 1972 .

[42]  H. Eichler,et al.  Wide-band Raman Stokes and anti-Stokes comb lasing in a BaF2 single crystal under picosecond pumping , 2008 .

[43]  Hans Joachim Eichler,et al.  New nonlinear laser effects in α-quartz: generation of a two-octave Stokes and anti-Stokes comb and cascaded lasing in the spectral range of the second and third harmonics , 2008 .

[44]  F. A. Kuznetsov,et al.  High-efficient stimulated-raman scattering in ferroelectric and ferroelastic orthorhombic Gd2(MoO4)3 crystals , 1996 .

[45]  H. Eichler,et al.  Many-wavelength picosecond Raman Stokes and anti-Stokes comb lasing of cubic SrF2 single crystal in the visible and near-IR , 2007 .