On the singular limit problem for a discontinuous nonlocal conservation law

[1]  Maria Colombo,et al.  Nonlocal Traffic Models with General Kernels: Singular Limit, Entropy Admissibility, and Convergence Rate , 2022, Archive for Rational Mechanics and Analysis.

[2]  A. Bayen,et al.  Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws , 2022, SIAM J. Appl. Dyn. Syst..

[3]  Alexander Keimer,et al.  Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity , 2021, Comptes Rendus. Mathématique.

[4]  Michael Schäfer Finite-Volume Methods , 2021, Computational Engineering - Introduction to Numerical Methods.

[5]  Nicola De Nitti,et al.  A general result on the approximation of local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels , 2020, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[6]  A. Bressan,et al.  Entropy admissibility of the limit solution for a nonlocal model of traffic flow , 2020, 2011.05430.

[7]  Thomas Lorenz Viability in a non-local population model structured by size and spatial position , 2020 .

[8]  Wolfgang Peukert,et al.  eMoM: Exact method of moments - Nucleation and size dependent growth of nanoparticles , 2020, Comput. Chem. Eng..

[9]  F. A. Chiarello,et al.  Nonlocal scalar conservation laws with discontinuous flux , 2020, Networks Heterog. Media.

[10]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[11]  A. Bressan,et al.  On Traffic Flow with Nonlocal Flux: A Relaxation Representation , 2019, 1911.03636.

[12]  A. Keimer,et al.  On approximation of local conservation laws by nonlocal conservation laws , 2019, Journal of Mathematical Analysis and Applications.

[13]  Thomas Lorenz Nonlocal hyperbolic population models structured by size and spatial position: Well-posedness , 2019, Discrete & Continuous Dynamical Systems - B.

[14]  E. Rossi,et al.  Well-posedness of a non-local model for material flow on conveyor belts , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[15]  Alexander Keimer,et al.  Nonlocal Scalar Conservation Laws on Bounded Domains and Applications in Traffic Flow , 2018, SIAM J. Math. Anal..

[16]  A. Keimer,et al.  Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping , 2018, Journal of Mathematical Analysis and Applications.

[17]  Maria Colombo,et al.  Local limit of nonlocal traffic models: convergence results and total variation blow-up , 2018, 1808.03529.

[18]  Nastassia Pouradier Duteil,et al.  Sparse Control of Hegselmann-Krause Models: Black Hole and Declustering , 2018, SIAM J. Control. Optim..

[19]  Maria Colombo,et al.  On the Singular Local Limit for Conservation Laws with Nonlocal Fluxes , 2017, Archive for Rational Mechanics and Analysis.

[20]  A. Keimer,et al.  Existence, uniqueness and regularity results on nonlocal balance laws , 2017 .

[21]  P. Kloeden,et al.  Nonlocal multi-scale traffic flow models: analysis beyond vector spaces , 2016 .

[22]  Sebastien Blandin,et al.  Well-posedness of a conservation law with non-local flux arising in traffic flow modeling , 2016, Numerische Mathematik.

[23]  Zhiqiang Wang,et al.  Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks , 2015, Networks Heterog. Media.

[24]  Rinaldo M. Colombo,et al.  Nonlocal Systems of Conservation Laws in Several Space Dimensions , 2015, SIAM J. Numer. Anal..

[25]  Rinaldo M. Colombo,et al.  NonLocal Systems of Balance Laws in Several Space Dimensions with Applications to Laser Technolog , 2015, 1504.00163.

[26]  Magali Lécureux-Mercier,et al.  Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow , 2011, 1112.4132.

[27]  R. Colombo,et al.  Nonlocal Crowd Dynamics Models for Several Populations , 2011, 1110.3596.

[28]  W. Shen,et al.  AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW , 2011, 1101.2131.

[29]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[30]  M. Herty,et al.  Control of the Continuity Equation with a Non Local Flow , 2009, 0902.2623.

[31]  K. Karlsen,et al.  Conservation laws with discontinuous flux: a short introduction , 2008 .

[32]  Adimurthi,et al.  Explicit Hopf–Lax type formulas for Hamilton–Jacobi equations and conservation laws with discontinuous coefficients , 2007 .

[33]  Siddhartha Mishra,et al.  Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes , 2006, Networks Heterog. Media.

[34]  Christian A. Ringhofer,et al.  A Continuum Model for a Re-entrant Factory , 2006, Oper. Res..

[35]  Camillo De Lellis,et al.  Minimal entropy conditions for Burgers equation , 2004 .

[36]  John D. Towers Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux , 2000, SIAM J. Numer. Anal..

[37]  Stefan Diehl,et al.  A conservation Law with Point Source and Discontinuous Flux Function Modelling Continuous Sedimentation , 1996, SIAM J. Appl. Math..

[38]  Stefan Diehl,et al.  On scalar conservation laws with point source and discontinuous flux function , 1995 .

[39]  E. Yu. Panov,et al.  Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy , 1994 .

[40]  T. Gimse Conservation laws with discontinuous flux functions , 1993 .

[41]  N. Risebro,et al.  Solution of the Cauchy problem for a conservation law with a discontinuous flux function , 1992 .

[42]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[43]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[44]  Felisia Angela Chiarello,et al.  ON EXISTENCE OF ENTROPY SOLUTIONS FOR 1D NONLOCAL CONSERVATION LAWS WITH SPACE-DISCONTINOUS FLUX , 2021 .

[45]  Sheila Scialanga,et al.  Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity , 2016, Networks Heterog. Media.

[46]  Rinaldo M. Colombo,et al.  On the Numerical Integration of Scalar Nonlocal Conservation Laws , 2015 .

[47]  Jean-Michel Coron,et al.  Controllability for a scalar conservation law with nonlocal velocity , 2012 .

[48]  Jérôme Jaffré,et al.  Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space , 2004, SIAM J. Numer. Anal..

[49]  Siam Staff,et al.  Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space , 2004 .

[50]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[51]  O. Oleinik Discontinuous solutions of non-linear differential equations , 1963 .

[52]  Vladimir I. Arnold,et al.  Seventeen Papers on Analysis , 1963 .