Sequential data assimilation in fine-resolution models using error-subspace emulators: Theory and preliminary evaluation

Abstract A novel technique for nonlinear sequential data assimilation in computationally expensive fine-resolution models is introduced. The technique involves basis function approximation for dimension reduction and Gaussian Process Modelling for simulation speedup. The basis function approximation is carried out via the Singular Value Decomposition (SVD) of the model ensemble. The Gaussian Process Models propagate the model solution in the error-subspace defined by a finite set of basis functions. The developed technique can also be considered approximate Particle Filtering with two classes of particles: model-particles representing an ensemble of computationally expensive model solutions, and emulator-particles representing an ensemble of fast and cheap model approximations. The algorithm was tested by assimilating synthetic data into a two-dimensional (one spatial dimension plus time) sediment transport model in an idealised vertically-resolved benthic–pelagic system. The assimilation algorithm updates 2 spatially varying state variables and 3 unknown parameters. Numerical experiments illustrate robust performance of the technique for a wide range of the assimilation settings. The capabilities and limitations of the approach are discussed, and further developments are outlined.

[1]  Jens Schröter,et al.  A comparison of error subspace Kalman filters , 2005 .

[2]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[3]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[4]  M. Dowd A sequential Monte Carlo approach for marine ecological prediction , 2006 .

[5]  Jeffrey L. Anderson,et al.  An adaptive covariance inflation error correction algorithm for ensemble filters , 2007 .

[6]  Lawrence M. Murray,et al.  A Bayesian approach to state and parameter estimation in a Phytoplankton-Zooplankton model , 2010 .

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  P. Guttorp,et al.  Statistical Assessment of Numerical Models * , 2003 .

[9]  P. Houtekamer,et al.  An Adaptive Ensemble Kalman Filter , 2000 .

[10]  Arnold W. Heemink,et al.  Model-Reduced Variational Data Assimilation , 2006 .

[11]  Nugzar Margvelashvili,et al.  Stretched Eulerian coordinate model of coastal sediment transport , 2009, Comput. Geosci..

[12]  P. Bickel,et al.  Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.

[13]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[14]  I. Hoteit,et al.  A high resolution data assimilation system for the Aegean Sea hydrodynamics , 2009 .

[15]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[16]  António M. Baptista,et al.  Author's Personal Copy Dynamics of Atmospheres and Oceans Fast Data Assimilation Using a Nonlinear Kalman Filter and a Model Surrogate: an Application to the Columbia River Estuary , 2022 .

[17]  Michael Dowd,et al.  Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo , 2007 .

[18]  A. Robinson,et al.  Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes , 1999, Monthly Weather Review.

[19]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[20]  J. Whitaker,et al.  Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches , 2005 .

[21]  Pierre F. J. Lermusiaux,et al.  Adaptive modeling, adaptive data assimilation and adaptive sampling , 2007 .

[22]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[23]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[24]  Jens Schröter,et al.  Sequential weak constraint parameter estimation in an ecosystem model , 2003 .

[25]  P. Leeuwen Efficient nonlinear data-assimilation in geophysical fluid dynamics , 2011 .

[26]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[27]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[28]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[29]  I. Hoteit,et al.  Assimilation of ocean colour data into a Biogeochemical Flux Model of the Eastern Mediterranean Sea , 2006 .

[30]  D. McLaughlin,et al.  Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation , 2006 .

[31]  P. J. van Leeuwen,et al.  A variance-minimizing filter for large-scale applications , 2003 .

[32]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[33]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[34]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[35]  Christopher K. I. Williams Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.

[36]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[37]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[38]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[39]  L. M. Berliner,et al.  Approximate importance sampling Monte Carlo for data assimilation , 2007 .

[40]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[41]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[42]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[43]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[44]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[45]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .