Preliminary Estimation and Validation of Polar Motion Excitation from Different Types of the GRACE and GRACE Follow-On Missions Data

[1]  H. Greiner-Mai Decade Variations of the Earth's Rotation and Geomagnetic Core-Mantle Coupling , 1993 .

[2]  M. Watkins,et al.  Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution , 2016 .

[3]  S. Bettadpur,et al.  Ensemble prediction and intercomparison analysis of GRACE time‐variable gravity field models , 2014 .

[4]  J. Camp,et al.  Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution , 2013, Journal of Glaciology.

[5]  J. Nastula,et al.  Hydrological signals in polar motion excitation – Evidence after fifteen years of the GRACE mission , 2019, Journal of Geodynamics.

[6]  M. Cheng,et al.  Deceleration in the Earth's oblateness , 2013 .

[7]  J. Nastula,et al.  Terrestrial water storage variations and their effect on polar motion , 2018, Acta Geophysica.

[8]  Henryk Dobslaw,et al.  Evaluating Gravimetric Polar Motion Excitation Estimates from the RL06 GRACE Monthly-Mean Gravity Field Models , 2020, Remote. Sens..

[9]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[10]  Jianli Chen,et al.  Satellite gravimetry and mass transport in the earth system , 2019, Geodesy and Geodynamics.

[11]  Jean-Yves Richard,et al.  The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014 , 2019, Journal of Geodesy.

[12]  J. Nastula,et al.  Hydrological excitation of polar motion by different variables from the GLDAS models , 2015, Journal of Geodesy.

[13]  Dimitris Menemenlis,et al.  Atmospheric and oceanic excitation of the Earth's wobbles during 1980–2000 , 2003 .

[14]  Florian Seitz,et al.  Mass-related excitation of polar motion: an assessment of the new RL06 GRACE gravity field models , 2018, Earth, Planets and Space.

[15]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[16]  Steven M. Klosko,et al.  Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies - Mass Concentrations Versus Stokes Coefficients , 2010 .

[17]  Grzegorz Michalak,et al.  The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment , 2019, Remote. Sens..

[18]  Jianli Chen,et al.  Seasonal excitation of polar motion , 2012 .

[19]  B. Tapley,et al.  Accelerometer Parameterization and the Quality of Gravity Recovery and Climate Experiment Solutions , 2020 .

[20]  Raymond Hide,et al.  Atmospheric angular momentum fluctuations, length-of-day changes and polar motion , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[22]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[23]  Srinivas Bettadpur,et al.  GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission , 2019, Journal of Spacecraft and Rockets.

[24]  Comparison of the geophysical excitations of polar motion from the period: 1980.0–2009.0 , 2011 .

[25]  Frank Flechtner,et al.  Contributions of GRACE to understanding climate change , 2019, Nature Climate Change.

[26]  C. Wilson,et al.  An estimate of the water storage contribution to the excitation of polar motion , 1987 .

[27]  R. König,et al.  A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06 , 2017 .

[28]  Jianli Chen,et al.  Hydrological excitations of polar motion, 1993–2002 , 2005 .

[29]  J. Nastula,et al.  Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids , 2007 .

[30]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[31]  Justyna Sliwinska,et al.  Prograde and Retrograde Terms of Gravimetric Polar Motion Excitation Estimates from the GRACE Monthly Gravity Field Models , 2020, Remote. Sens..

[32]  B. Chao,et al.  Hydrological and oceanic excitations to polar motion andlength‐of‐day variation , 2000 .

[33]  Hydrological Excitations of Polar Motion from GRACE Gravity Field Solutions , 2015 .

[34]  B. Kołaczek,et al.  Seasonal excitation of polar motion estimated from recent geophysical models and observations , 2009 .

[35]  B. Kołaczek,et al.  Patterns of atmospheric excitation functions of polar motion from high‐resolution regional sectors , 2009 .

[36]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[37]  Andreas Güntner,et al.  Improvement of Global Hydrological Models Using GRACE Data , 2008 .

[38]  Assessing hydrological signal in polar motion from observations and geophysical models , 2018, Studia Geophysica et Geodaetica.

[39]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[40]  J. Nastula,et al.  Hydrological Excitation of Polar Motion Derived from GRACE Gravity Field Solutions , 2011 .

[41]  J. Nastula,et al.  Further evidence for oceanic excitation of polar motion , 1999 .

[42]  A. Brzeziński,et al.  Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere , 2010 .

[43]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[44]  D. Chambers,et al.  GRACE, time-varying gravity, Earth system dynamics and climate change , 2014, Reports on progress in physics. Physical Society.

[45]  Justyna Sliwinska,et al.  Determining and Evaluating the Hydrological Signal in Polar Motion Excitation from Gravity Field Models Obtained from Kinematic Orbits of LEO Satellites , 2019, Remote. Sens..

[46]  B. Chao,et al.  Global surface-water-induced seasonal variations in the earth's rotation and gravitational field , 1988 .

[47]  B. Kołaczek,et al.  Oceanic excitation of polar motion from intraseasonal to decadal periods , 2005 .

[48]  E. Ivins,et al.  What drives 20th century polar motion? , 2018, Earth and Planetary Science Letters.

[49]  M. Murböck,et al.  Reducing filter effects in GRACE-derived polar motion excitations , 2019, Earth, Planets and Space.

[50]  Minkang Cheng,et al.  Variations of the Earth's figure axis from satellite laser ranging and GRACE , 2011 .

[51]  R. Biancale,et al.  Agreement between Earth's rotation and mass displacement as detected by GRACE , 2012 .

[52]  B. Kołaczek,et al.  Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion , 2016, Acta Geophysica.

[53]  T. Dam,et al.  A comparison of interannual hydrological polar motion excitation from GRACE and geodetic observations , 2016 .

[54]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[55]  Jianli Chen,et al.  Ice and groundwater effects on long term polar motion (1979–2010) , 2017 .

[56]  G. Blewitt,et al.  Consistency of Earth Rotation, Gravity, and Shape Measurements , 2009 .