Asymptotic Behavior of the Fractional Heston Model

We consider the fractional Heston model originally proposed by Comte, Coutin and Renault [12]. Inspired by recent ground-breaking work on rough volatility [2, 6, 24, 26] which showed that models with volatility driven by fractional Brownian motion with short memory allows for better calibration of the volatility surface and more robust estimation of time series of historical volatility, we provide a characterisation of the shortand long-maturity asymptotics of the implied volatility smile. Our analysis reveals that the short-memory property precisely provides a jump-type behaviour of the smile for short maturities, thereby fixing the well-known standard inability of classical stochastic volatility models to fit the short-end of the volatility smile.

[1]  M. Rosenbaum,et al.  The characteristic function of rough Heston models , 2016, 1609.02108.

[2]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[3]  J. Vives,et al.  On the Short-Time Behavior of the Implied Volatility for Jump-Diffusion Models With Stochastic Volatility , 2006 .

[4]  L. Rogers Arbitrage with Fractional Brownian Motion , 1997 .

[5]  Vojislav Marić,et al.  Regular Variation and Differential Equations , 2000 .

[6]  Hongzhong Zhang,et al.  Asymptotics for Rough Stochastic Volatility Models , 2017, SIAM J. Financial Math..

[7]  Antoine Jacquier,et al.  The large-maturity smile for the Heston model , 2011, Finance Stochastics.

[8]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[9]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.

[10]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[11]  A. Jacquier,et al.  The Randomised Heston Model , 2016, 1608.07158.

[12]  A. Jacquier,et al.  Large deviations and stochastic volatility with jumps: asymptotic implied volatility for affine models , 2011, 1108.3998.

[13]  C. Bayer,et al.  Short-time near-the-money skew in rough fractional volatility models , 2017, Quantitative Finance.

[14]  Jim Gatheral,et al.  Exponentiation of conditional expectations under stochastic volatility , 2018, Quantitative Finance.

[15]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[16]  G. Papanicolaou,et al.  Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives , 2011 .

[17]  R. Mendes,et al.  The fractional volatility model: No-arbitrage, leverage and completeness , 2012, 1205.2866.

[18]  Mathieu Rosenbaum,et al.  The microstructural foundations of leverage effect and rough volatility , 2018, Finance Stochastics.

[19]  Peter Tankov,et al.  A New Look at Short‐Term Implied Volatility in Asset Price Models with Jumps , 2012 .

[20]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[21]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[22]  Patrick Cheridito,et al.  Arbitrage in fractional Brownian motion models , 2003, Finance Stochastics.

[23]  B. Bercu,et al.  Sharp Large Deviations for the Ornstein--Uhlenbeck Process , 2002 .

[24]  A. Jacquier,et al.  SMALL-TIME ASYMPTOTICS FOR IMPLIED VOLATILITY UNDER THE HESTON MODEL , 2009 .

[25]  Masaaki Fukasawa,et al.  Asymptotic analysis for stochastic volatility: martingale expansion , 2011, Finance Stochastics.

[26]  M. Yor,et al.  Mathematical Methods for Financial Markets , 2009 .

[27]  Tomas Björk,et al.  A note on Wick products and the fractional Black-Scholes model , 2005, Finance Stochastics.

[28]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[29]  F. Comte,et al.  Affine fractional stochastic volatility models , 2012 .

[30]  P. Guasoni NO ARBITRAGE UNDER TRANSACTION COSTS, WITH FRACTIONAL BROWNIAN MOTION AND BEYOND , 2006 .

[31]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[32]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[33]  Jim Gatheral The Volatility Surface: A Practitioner's Guide , 2006 .

[34]  R. Elliott,et al.  A General Fractional White Noise Theory And Applications To Finance , 2003 .

[35]  R. Rebonato Volatility and correlation : the perfect hedger and the fox , 2004 .

[36]  'Hot-Start' Initialization of the Heston Model , 2015 .

[37]  A. Jacquier,et al.  The Small-Maturity Heston Forward Smile , 2013 .

[38]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[39]  Archil Gulisashvili,et al.  Analytically Tractable Stochastic Stock Price Models , 2012 .

[40]  Mathieu Rosenbaum,et al.  Perfect hedging in rough Heston models , 2017, The Annals of Applied Probability.

[41]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[42]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[43]  I︠U︡lii︠a︡ S. Mishura Stochastic Calculus for Fractional Brownian Motion and Related Processes , 2008 .

[44]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[45]  Jim Gatheral,et al.  Pricing under rough volatility , 2015 .

[46]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[47]  B. Øksendal,et al.  FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE , 2003 .

[48]  P. Tankov Pricing and Hedging in Exponential Lévy Models: Review of Recent Results , 2011 .

[49]  M. Keller-Ressel,et al.  MOMENT EXPLOSIONS AND LONG‐TERM BEHAVIOR OF AFFINE STOCHASTIC VOLATILITY MODELS , 2008, 0802.1823.