Ab initio (CASPT2) excited state calculations, including circular dichroism, of helically twisted cyanine dyes.

Ab initio calculations at the CASSCF/CASPT2 level were performed on helically twisted mono-, tri-, and pentamethine cyanine dyes in the all-Z-configurations. Excitation energies and oscillator and rotatory strengths were calculated for the five lowest energy singlet states. Both the long wavelength methine band and the cis-band could be identified unambiguously from their configurational parentage. The calculated state energies are within 0.09 eV of the experimental value for the methine band and within 0.16 eV for the cis-band. The calculated rotatory strengths of the methine band shows sign inversion as the length of the chromophore increases: negative for the short monomethine, strongly positive for the pentamethine. The trimethine presents a borderline case: the measured rotatory strength is almost nil, the calculated one depends on the geometry. There is good agreement between rotatory strengths calculated in the velocity and in the length formalism.

[1]  V. Buss,et al.  Inherent chirality of the retinal chromophore in rhodopsin-A nonempirical theoretical analysis of chiroptical data. , 2001, Chirality.

[2]  C. Reichardt,et al.  Synthesis and UV/Vis Spectroscopic Properties of Chiral Symmetrical Pentamethinium Cyanine Dyes with 1′,2′,3′,4′,10,11‐Hexahydroquinin‐1′‐yl and ‐Hexahydroquinidin‐1′‐yl End Groups , 1999 .

[3]  Frank Terstegen,et al.  Structure and dynamics of helically twisted cyanine dyes , 1999 .

[4]  Markus P. Fülscher,et al.  A Theoretical Study of the Electronic Spectra of Adenine and Guanine , 1997 .

[5]  B. Roos,et al.  A Theoretical Study of the Indigoid Dyes and Their Chromophore , 1997 .

[6]  V. Buss,et al.  Helically twisted chiral cyanine dyes: Influence of chromophore length on observed and calculated rotatory strengths , 1997 .

[7]  B. Roos,et al.  Applications of level shift corrected perturbation theory in electronic spectroscopy , 1996 .

[8]  V. Buss,et al.  Chiral Tri‐ and Pentamethinium Cyanine Dyes with 1,2,3,4‐Tetrahydro‐6‐methylquinolyl End Groups: UV/Vis and CD Spectroscopy and Structure Correlations , 1996 .

[9]  G. Henkel,et al.  Der erste chirale, C2‐symmetrische Monomethinfarbstoff – eine scheinbare Verletzung der Helicitätsregeln für die optische Rotation , 1996 .

[10]  Markus P. Fülscher,et al.  Multiconfigurational perturbation theory: Applications in electronic spectroscopy , 1996 .

[11]  C. Reichardt Chiral Polymethine Dyes: A Remarkable but Forgotten Conjugated π System , 1995 .

[12]  B. Roos,et al.  A theoretical study of the electronic spectra of pyridine and phosphabenzene , 1995 .

[13]  M. Fülscher,et al.  Excited states in polyene radical cations. An ab initio theoretical study , 1995 .

[14]  C. Reichardt,et al.  Chiral polymethine dyes, V. syntheses, absolute configuration, spectroscopic, and chiroptical properties of chiral dinuclear tri‐ and pentamethinium as well as trinuclear [2.2.2]heptamethinediium cyanine dyes with 3‐sec‐butyl‐1,3‐dimethylindolyl end groups , 1995 .

[15]  C. Reichardt,et al.  Chiral polymethine dyes, IV. Synthesis, absolute configuration, spectroscopic and chiroptical properties of chiral tri‐ and pentamethinium cyanine dyes with 1,2,3,4‐tetrahydro‐6‐methylquinolyl end groups , 1995 .

[16]  B. Roos,et al.  Ground state free base porphin: C2v or D2h symmetry? A theoretical contribution , 1994 .

[17]  B. Roos,et al.  Theoretical study of the electronic spectrum of all-trans-1,3,5,7-octatetraene , 1993 .

[18]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[19]  B. Roos,et al.  An ab initio quantum chemical study of vertically excited singlet states of pyrimidine , 1992 .

[20]  B. Roos,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[21]  Björn O. Roos,et al.  The CASSCF state interaction method , 1989 .

[22]  David J. Williams Organische polymere und nichtpolymere Materialien mit guten nichtlinearen optischen Eigenschaften , 1984 .

[23]  R. Benn,et al.  Konformationsanalyse von Polymethinen I. Erstmaliger Nachweis von di‐, tri‐ und all‐cis‐Konformationen bei sterisch gehinderten Trimethincyaninen (Carbocyaninen) der Indolin‐ und Benzothiazolreihe , 1983 .

[24]  P. Schippers,et al.  OPTICAL ACTIVITY OF β,Γ-ENONES: A QUANTITATIVE CHIRALITY RULE , 1983 .

[25]  S. Mason Optical Activity and Chiral Discrimination , 1979 .

[26]  C. Reichardt Synthesen mit substituierten Malondialdehyden, IV1) γ‐Nitro‐tetramethinmerocyanin‐ und γ‐Nitro‐pentamethincyanin‐Farbstoffe2) , 1968 .

[27]  I. Tinoco,et al.  Optical Rotation of Oriented Helices. IV. A Free Electron on a Helix , 1964 .