CRISPRi-Mediated Silencing of Burkholderia O-Linked Glycosylation Systems Enables the Depletion of Glycosylation Yet Results in Modest Proteome Impacts.

The process of O-linked protein glycosylation is highly conserved across the Burkholderia genus and mediated by the oligosaccharyltransferase PglL. While our understanding of Burkholderia glycoproteomes has increased in recent years, little is known about how Burkholderia species respond to modulations in glycosylation. Utilizing CRISPR interference (CRISPRi), we explored the impact of silencing of O-linked glycosylation across four species of Burkholderia; Burkholderia cenocepacia K56-2, Burkholderia diffusa MSMB375, Burkholderia multivorans ATCC17616, and Burkholderia thailandensis E264. Proteomic and glycoproteomic analyses revealed that while CRISPRi enabled inducible silencing of PglL, this did not abolish glycosylation, nor recapitulate phenotypes such as proteome changes or alterations in motility that are associated with glycosylation null strains, despite inhibition of glycosylation by nearly 90%. Importantly, this work also demonstrated that CRISPRi induction with high levels of rhamnose leads to extensive impacts on the Burkholderia proteomes, which without appropriate controls mask the impacts specifically driven by CRISPRi guides. Combined, this work revealed that while CRISPRi allows the modulation of O-linked glycosylation with reductions up to 90% at a phenotypic and proteome levels, Burkholderia appears to demonstrate a robust tolerance to fluctuations in glycosylation capacity.

[1]  Nichollas E. Scott,et al.  Discovery and characterization of a new class of O-linking oligosaccharyltransferases from the Moraxellaceae family , 2022, Glycobiology.

[2]  Tatum D. Mortimer,et al.  Sculpting the Bacterial O-Glycoproteome: Functional Analyses of Orthologous Oligosaccharyltransferases with Diverse Targeting Specificities , 2022, mBio.

[3]  S. Cardona,et al.  Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in Burkholderia spp. , 2021, Applied and environmental microbiology.

[4]  C. J. Knoot,et al.  A minimal sequon sufficient for O-linked glycosylation by the versatile oligosaccharyltransferase PglS , 2021, Glycobiology.

[5]  Nichollas E. Scott,et al.  Burkholderia PglL enzymes are Serine preferring oligosaccharyltransferases which target conserved proteins across the Burkholderia genus , 2021, Communications Biology.

[6]  E. Rocha,et al.  The impact of genetic diversity on gene essentiality within the Escherichia coli species , 2021, Nature Microbiology.

[7]  Alexey I Nesvizhskii,et al.  Fast Deisotoping Algorithm and Its Implementation in the MSFragger Search Engine. , 2020, Journal of proteome research.

[8]  C. Gross,et al.  Bacterial CRISPR screens for gene function. , 2020, Current opinion in microbiology.

[9]  H. Link,et al.  Multi-omics Analysis of CRISPRi-Knockdowns Identifies Mechanisms that Buffer Decreases of Enzymes in E. coli Metabolism. , 2020, Cell systems.

[10]  B. Wren,et al.  Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance , 2020, mBio.

[11]  Nichollas E. Scott,et al.  What Are We Missing by Using Hydrophilic Enrichment? Improving Bacterial Glycoproteome Coverage Using Total Proteome and FAIMS Analyses. , 2020, Journal of proteome research.

[12]  M. Valvano,et al.  Complete Genome Sequence of Burkholderia cenocepacia K56-2, an Opportunistic Pathogen , 2020, Microbiology Resource Announcements.

[13]  Fengchao Yu,et al.  Identification of modified peptides using localization-aware open search , 2020, Nature Communications.

[14]  Alexey I. Nesvizhskii,et al.  Philosopher: a versatile toolkit for shotgun proteomics data analysis , 2020, Nature Methods.

[15]  Fengchao Yu,et al.  PTM-Shepherd: Analysis and Summarization of Post-Translational and Chemical Modifications From Open Search Results , 2020, bioRxiv.

[16]  Nichollas E. Scott,et al.  Open Database Searching Enables the Identification and Comparison of Bacterial Glycoproteomes without Defining Glycan Compositions Prior to Searching , 2020, Molecular & Cellular Proteomics.

[17]  M. DeLisa,et al.  Synthetic Glycobiology: Parts, Systems, and Applications , 2020, ACS synthetic biology.

[18]  Rémi Planel,et al.  On-target activity predictions enable improved CRISPR–dCas9 screens in bacteria , 2020, Nucleic acids research.

[19]  S. Cordwell,et al.  Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. , 2020, Molecular omics.

[20]  B. Wren,et al.  Virulence of the emerging pathogen, Burkholderia pseudomallei, depends upon the O-linked oligosaccharyltransferase, PglL , 2020, Future microbiology.

[21]  H. Nothaft,et al.  N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. , 2020, Glycobiology.

[22]  Y. Grad,et al.  Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system , 2019, PLoS genetics.

[23]  M. Walvoort,et al.  Processivity in Bacterial Glycosyltransferases , 2019, ACS chemical biology.

[24]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[25]  S. Cardona,et al.  A broad-host-range CRISPRi toolkit for silencing gene expression in Burkholderia. , 2019, ACS synthetic biology.

[26]  B. Maček,et al.  Protein post-translational modifications in bacteria , 2019, Nature Reviews Microbiology.

[27]  Jeremy M. Rock Tuberculosis drug discovery in the CRISPR era , 2019, PLoS pathogens.

[28]  J. Mekalanos,et al.  Analysis of lipoprotein transport depletion in Vibrio cholerae using CRISPRi , 2019, Proceedings of the National Academy of Sciences.

[29]  Nichollas E. Scott,et al.  A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans , 2019, The Journal of Biological Chemistry.

[30]  G. Cook,et al.  Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in Mycobacterium tuberculosis , 2019, Antimicrobial Agents and Chemotherapy.

[31]  M. Koomey O-linked protein glycosylation in bacteria: snapshots and current perspectives. , 2019, Current opinion in structural biology.

[32]  P. Hitchen,et al.  Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen , 2019, mBio.

[33]  Sean J. Humphrey,et al.  Proteomic Analysis of Human Plasma during Intermittent Fasting , 2019, Journal of proteome research.

[34]  Nichollas E. Scott,et al.  A platform for glycoengineering a polyvalent pneumococcal bioconjugate vaccine using E. coli as a host , 2019, Nature Communications.

[35]  Nichollas E. Scott,et al.  Proteomics Reveals Multiple Phenotypes Associated with N-linked Glycosylation in Campylobacter jejuni* , 2019, Molecular & Cellular Proteomics.

[36]  H. Link,et al.  Allosteric Feedback Inhibition Enables Robust Amino Acid Biosynthesis in E. coli by Enforcing Enzyme Overabundance , 2019, Cell systems.

[37]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[38]  T. Hoang,et al.  The heritable natural competency trait of Burkholderia pseudomallei in other Burkholderia species through comE and crp , 2018, Scientific Reports.

[39]  F. Rousset,et al.  A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9 , 2018, Nature Communications.

[40]  A. C. Forster,et al.  Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology , 2018, Journal of biological engineering.

[41]  M. Koomey,et al.  Sweet New Roles for Protein Glycosylation in Prokaryotes. , 2017, Trends in microbiology.

[42]  Alexey I Nesvizhskii,et al.  MSFragger: ultrafast and comprehensive peptide identification in shotgun proteomics , 2017, Nature Methods.

[43]  George M. Church,et al.  Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform , 2016, Nature Microbiology.

[44]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[45]  S. Cardona,et al.  Synthetic Cystic Fibrosis Sputum Medium Regulates Flagellar Biosynthesis through the flhF Gene in Burkholderia cenocepacia , 2016, Front. Cell. Infect. Microbiol..

[46]  John S. Hawkins,et al.  A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria , 2016, Cell.

[47]  Edward J. O'Brien,et al.  Quantification and Classification of E. coli Proteome Utilization and Unused Protein Costs across Environments , 2016, PLoS Comput. Biol..

[48]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[49]  Nichollas E. Scott,et al.  Protein O-linked glycosylation in the plant pathogen Ralstonia solanacearum. , 2015, Glycobiology.

[50]  M. Koomey,et al.  Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica , 2015, Journal of bacteriology.

[51]  Nichollas E. Scott,et al.  Acinetobacter strains carry two functional oligosaccharyltransferases, one devoted exclusively to type IV pilin, and the other one dedicated to O‐glycosylation of multiple proteins , 2015, Molecular microbiology.

[52]  Kirsten Jung,et al.  Arginine-rhamnosylation as new strategy to activate translation elongation factor P. , 2015, Nature chemical biology.

[53]  Nichollas E. Scott,et al.  A general protein O‐glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence , 2014, Molecular microbiology.

[54]  M. Mann,et al.  Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells , 2014, Nature Methods.

[55]  Yan Zhang,et al.  PATRIC, the bacterial bioinformatics database and analysis resource , 2013, Nucleic Acids Res..

[56]  Christopher E. Jones,et al.  Identification of Bacterial Protein O-Oligosaccharyltransferases and Their Glycoprotein Substrates , 2013, PloS one.

[57]  H. Nothaft,et al.  Bacterial Protein N-Glycosylation: New Perspectives and Applications* , 2013, The Journal of Biological Chemistry.

[58]  M. Koomey,et al.  Characterization of exogenous bacterial oligosaccharyltransferases in Escherichia coli reveals the potential for O-linked protein glycosylation in Vibrio cholerae and Burkholderia thailandensis. , 2012, Glycobiology.

[59]  Nichollas E. Scott,et al.  Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation , 2012, PLoS pathogens.

[60]  R. Titball,et al.  O-Linked Glycosylation of the PilA Pilin Protein of Francisella tularensis: Identification of the Endogenous Protein-Targeting Oligosaccharyltransferase and Characterization of the Native Oligosaccharide , 2011, Journal of bacteriology.

[61]  Nichollas E. Scott,et al.  Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni* , 2010, Molecular & Cellular Proteomics.

[62]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[63]  W. Yi,et al.  Extreme Substrate Promiscuity of the Neisseria Oligosaccharyl Transferase Involved in Protein O-Glycosylation* , 2008, Journal of Biological Chemistry.

[64]  Raymond Lo,et al.  The Burkholderia Genome Database: facilitating flexible queries and comparative analyses , 2008, Bioinform..

[65]  I. Beacham,et al.  Genetic Tools for Select-Agent-Compliant Manipulation of Burkholderia pseudomallei , 2008, Applied and Environmental Microbiology.

[66]  R. S. Flannagan,et al.  A system for the construction of targeted unmarked gene deletions in the genus Burkholderia. , 2008, Environmental microbiology.

[67]  Hadley Wickham,et al.  Reshaping Data with the reshape Package , 2007 .

[68]  J. Klassen,et al.  Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation , 2007, Journal of bacteriology.

[69]  Alan R. Brown,et al.  A Putative Gene Cluster for Aminoarabinose Biosynthesis Is Essential for Burkholderia cenocepacia Viability , 2007, Journal of bacteriology.

[70]  Joseph Horzempa,et al.  Glycosylation Substrate Specificity of Pseudomonas aeruginosa 1244 Pilin* , 2006, Journal of Biological Chemistry.

[71]  D. Stolz,et al.  Influence of Pilin Glycosylation on Pseudomonas aeruginosa 1244 Pilus Function , 2005, Infection and Immunity.

[72]  S. Cardona,et al.  An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. , 2005, Plasmid.

[73]  M. Tsuda,et al.  Distribution and Organization of Auxotrophic Genes on the Multichromosomal Genome of Burkholderia multivorans ATCC 17616 , 2003, Journal of bacteriology.

[74]  M. Valvano,et al.  Construction and Evaluation of Plasmid Vectors Optimized for Constitutive and Regulated Gene Expression in Burkholderia cepacia Complex Isolates , 2002, Applied and Environmental Microbiology.

[75]  M. Jennings,et al.  Genetic characterization of pilin glycosylation in Neisseria meningitidis. , 2000, Microbiology.

[76]  P. Castric pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. , 1995, Microbiology.

[77]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[78]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.

[79]  H. Schweizer,et al.  Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. , 2000, Plasmid.

[80]  H. Nojima,et al.  High efficiency transformation of Escherichia coli with plasmids. , 1990, Gene.

[81]  JoVE Video Dataset , 2022 .