A Comparison of Mean-Variance Efficiency Tests

We analyse the asymptotic properties of mean-variance efficiency tests based on generalised methods of moments, and parametric and semiparametric likelihood procedures that assume elliptical innovations. We study the trade-off between efficiency and robustness, and prove that the parametric estimators provide asymptotically valid inferences when the conditional distribution of the innovations is elliptical but possibly misspecified and heteroskedastic. We compare the small sample performance of the alternative tests in a Monte Carlo study, and find some discrepancies with their asymptotic properties. Finally, we present an empirical application to US stock returns, which rejects the mean-variance efficiency of the market portfolio.

[1]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[2]  A. Craig MacKinlay,et al.  Using Generalized Method of Moments to Test Mean‐Variance Efficiency , 1991 .

[3]  Douglas J. Hodgson Unconditional pseudo-maximum likelihood and adaptive estimation in the presence of conditional heterogeneity of unknown form , 2000 .

[4]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[5]  John Geweke,et al.  THE APPROXIMATE SLOPES OF ECONOMETRIC TESTS , 1981 .

[6]  J. Magnus,et al.  Matrix Differential Calculus with Applications , 1988 .

[7]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[8]  Saralees Nadarajah,et al.  Information matrices for normal and Laplace mixtures , 2007, Inf. Sci..

[9]  Enrique Sentana,et al.  Estimation and testing of dynamic models with generalised hyperbolic innovations , 2005 .

[10]  Oliver Linton,et al.  Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach , 2002 .

[11]  H. Bateman,et al.  Higher Transcendental Functions [Volumes I-III] , 1953 .

[12]  Joel Owen,et al.  On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice , 1983 .

[13]  R. R. Bahadur Stochastic comparison of tests , 1960 .

[14]  N. Cressie,et al.  The Moment-Generating Function and Negative Integer Moments , 1981 .

[15]  Jonathan B. Berk,et al.  Necessary Conditions for the CAPM , 1997 .

[16]  T. Nijman,et al.  Testing for mean-variance spanning: a survey , 2001 .

[17]  Keith Vorkink,et al.  Return Distributions and Improved Tests of Asset Pricing Models , 2003 .

[18]  Jay Shanken,et al.  Testing Portfolio Efficiency When the Zero-Beta Rate Is Unknown: A Note , 1986 .

[19]  J. Jobson,et al.  Estimation for Markowitz Efficient Portfolios , 1980 .

[20]  Gur Huberman,et al.  Mean-Variance Spanning , 1987 .

[21]  James G. MacKinnon,et al.  Graphical Methods for Investigating the Size and Power of Hypothesis Tests , 1998 .

[22]  Rudolf Beran,et al.  Testing for Ellipsoidal Symmetry of a Multivariate Density , 1979 .

[23]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[24]  S. Kotz Multivariate Distributions at a Cross Road , 1975 .

[25]  M. Crowder Maximum Likelihood Estimation for Dependent Observations , 1976 .

[26]  Gabriele Fiorentini,et al.  On the efficiency and consistency of likelihood estimation in multivariate conditionally heteroskedastic dynamic regression models , 2007 .

[27]  Stephen A. Ross,et al.  A Test of the Efficiency of a Given Portfolio , 1989 .

[28]  G. Chamberlain A characterization of the distributions that imply mean—Variance utility functions☆ , 1983 .

[29]  Oliver Linton,et al.  Testing Forward Exchange Rate Unbiasedness Efficiently: A Semiparametric Approach , 2004 .

[30]  Enrique Sentana,et al.  Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models With Student t Innovations , 2003 .

[31]  Guofu Zhou,et al.  Asset‐pricing Tests under Alternative Distributions , 1993 .

[32]  Mao-Wei Hung,et al.  Can the Gains from International Diversification Be Achieved without Trading Abroad , 1999 .

[33]  Jean-Marie Dufour,et al.  Finite-sample identification-robust inference for unobservable zero-beta rates and portfolio efficiency with non-Gaussian distributions ⁄ , 2007 .

[34]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[35]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[36]  F. Black,et al.  The Capital Asset Pricing Model: Some Empirical Tests , 2006 .

[37]  É. Renault,et al.  Quadratic M-Estimators for ARCH-Type Processes , 1998 .

[38]  Jean-Marie Dufour,et al.  Testing Mean-Variance Efficiency in CAPM with Possibly Non-Gaussian Errors: An Exact Simulation-Based Approach , 2002, SSRN Electronic Journal.

[39]  Marie-Claude Beaulieu,et al.  Multivariate Tests of Mean–Variance Efficiency With Possibly Non-Gaussian Errors , 2007 .

[40]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[41]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[42]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[43]  Guofu Zhou Small sample tests of portfolio efficiency , 1991 .

[44]  Enrique Sentana,et al.  Spanning Tests in Return and Stochastic Discount Factor Mean-Variance Frontiers: A Unifying Approach , 2004 .