AGILIS: Agile Guided Interferometer for Longbaseline Imaging Synthesis - Demonstration and concepts of reconfigurable optical imaging interferometers

Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims. Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods. To support this claim, we report on the successful completion of the ‘OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the ‘OHANA project. Results. Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions. AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).

[1]  Sébastien Vergnole,et al.  Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ’OHANA project , 2004 .

[2]  G. Perrin,et al.  High dynamic range imaging with a single-mode pupil remapping system: a self-calibration algorithm for redundant interferometric arrays , 2006 .

[3]  David F. Buscher,et al.  THE CONCEPTUAL DESIGN OF THE MAGDALENA RIDGE OBSERVATORY INTERFEROMETER , 2013, 1307.0391.

[4]  M. Schoeller,et al.  The central dusty torus in the active nucleus of NGC 1068 , 2004, Nature.

[5]  Wesley A. Traub,et al.  Interferometry for Optical Astronomy II , 2003 .

[6]  F. Reynaud,et al.  Interferometric Coupling of the Keck Telescopes with Single-Mode Fibers , 2006, Science.

[7]  J.-M. Mariotti,et al.  Deriving object visibilities from interferograms obtained with a fiber stellar interferometer , 1997 .

[8]  Antoine Labeyrie,et al.  The Optical Very Large Array , 1986, Astronomical Telescopes and Instrumentation.

[9]  Uwe Graser,et al.  Parsec-scale dust distributions in Seyfert galaxies Results of the MIDI AGN snapshot survey , 2009, 0903.4892.

[10]  Bertrand Koehler,et al.  A new plan for the VLTI. , 1997 .

[11]  J.-M. Mariotti Adaptive Optics for Long Baseline Optical Interferometry , 1994 .

[12]  M.Swain,et al.  Interferometer Observations of Subparsec-Scale Infrared Emission in the Nucleus of NGC 4151 , 2003 .

[13]  Vianak Naranjo,et al.  GRAVITY: observing the universe in motion , 2011 .

[14]  et al,et al.  The Palomar Testbed Interferometer , 1999 .

[15]  Norbert Hubin,et al.  Using single-mode fibers to monitor fast Strehl ratio fluctuations - Application to a 3.6 m telescope corrected by adaptive optics , 2000 .

[16]  H. Lèfevre,et al.  Single-mode fibre fractional wave devices and polarisation controllers , 1980 .

[17]  A. Tikhonravov,et al.  Phase optimization of dispersive mirrors based on floating constants. , 2010, Optics express.

[18]  G. Perrin Subtracting the photon noise bias from single-mode optical interferometer visibilities , 2003 .

[19]  Sébastien Vergnole,et al.  Characterization of fluoride fibers for the Optical Hawaiian Array for Nanoradian Astronomy project. , 2005, Applied optics.

[20]  John D. Monnier,et al.  A dispersed heterodyne design for the planet formation imager , 2014, Astronomical Telescopes and Instrumentation.

[21]  D. Mourard,et al.  Tests with a Carlina-type diluted telescope - Primary coherencing , 2012, 1201.2596.

[22]  John D. Monnier,et al.  Infrared images of the transiting disk in the ε Aurigae system , 2010, Nature.

[23]  Olivier Guyon,et al.  'OHANA phase II: a prototype demonstrator of fiber-linked interferometry between very large telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[24]  Frantz Martinache,et al.  Enhancing Stellar Spectroscopy with Extreme Adaptive Optics and Photonics , 2016, 1609.06388.

[25]  A. Labeyrie,et al.  Construction of a 57m hypertelescope in the Southern Alps , 2012, Other Conferences.

[26]  F. P. Schloerb,et al.  Infrared Imaging of Capella with the IOTA Closure Phase Interferometer , 2005 .

[27]  D. Gloge Weakly guiding fibers. , 1971, Applied optics.

[28]  H McAlister,et al.  Imaging the Surface of Altair , 2007, Science.

[29]  Gautam Vasisht,et al.  The Keck Interferometer , 2013 .

[30]  E. Tatulli,et al.  Estimating the phase in groundbased interferometry: performance comparison between singlemode and multimode schemes , 2010, 1009.1797.

[31]  Pietro Di Lena,et al.  Interferometric connection of large ground-based telescopes , 1996 .

[32]  J. Armstrong,et al.  The Navy Prototype Optical Interferometer , 1998 .

[33]  John D. Monnier,et al.  Planet formation imager (PFI): introduction and technical considerations , 2014, Astronomical Telescopes and Instrumentation.

[34]  L. Barr Advanced Technology Optical Telescopes III , 1986 .

[35]  Nicholas M. Elias,et al.  Direct Confirmation of Stellar Limb Darkening with the Navy Prototype Optical Interferometer , 1998 .

[36]  Wesley A. Traub,et al.  Current status of the IOTA interferometer , 1994, Astronomical Telescopes and Instrumentation.

[37]  F. Malbet,et al.  Imaging the heart of astrophysical objects with optical long-baseline interferometry , 2012, 1204.4363.

[38]  F. Roddier,et al.  Coupling starlight into single-mode fiber optics. , 1988, Applied optics.

[39]  M. Ferrari Development of a variable curvature mirror for the delay lines of the VLT interferometer , 1998 .

[40]  Jean Surdej,et al.  The science case for the Planet Formation Imager (PFI) , 2014, Astronomical Telescopes and Instrumentation.

[41]  Sébastien Vergnole,et al.  Calibration of silica fibers for the Optical Hawaiian Array for Nanoradian Astronomy (‘OHANA): Temperature dependence of differential chromatic dispersion , 2005 .

[42]  Edmund C. Sutton,et al.  Optimal Image Reconstruction in Radio Interferometry , 2006, astro-ph/0604331.

[43]  O. Guyon Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging , 2003, astro-ph/0301190.

[44]  F. P. Schloerb,et al.  High-resolution imaging of dust shells by using Keck aperture masking and the IOTA interferometer , 2004 .

[45]  G. Perrin,et al.  High dynamic range imaging by pupil single‐mode filtering and remapping , 2006 .

[46]  F. Reynaud,et al.  An all guided three-arm interferometer for stellar interferometry , 2001 .

[47]  William C. Danchi,et al.  A dusty pinwheel nebula around the massive star WR104 , 1999, Nature.

[48]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[49]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .