Polypharmacology Browser PPB2: Target Prediction Combining Nearest Neighbors with Machine Learning

Here we report PPB2 as a target prediction tool assigning targets to a query molecule based on ChEMBL data. PPB2 computes ligand similarities using molecular fingerprints encoding composition (MQN), molecular shape and pharmacophores (Xfp), and substructures (ECfp4) and features an unprecedented combination of nearest neighbor (NN) searches and Naı̈ve Bayes (NB) machine learning, together with simple NN searches, NB and Deep Neural Network (DNN) machine learning models as further options. Although NN(ECfp4) gives the best results in terms of recall in a 10-fold cross-validation study, combining NN searches with NB machine learning provides superior precision statistics, as well as better results in a case study predicting off-targets of a recently reported TRPV6 calcium channel inhibitor, illustrating the value of this combined approach. PPB2 is available to assess possible off-targets of small molecule drug-like compounds by public access at http://gdb.unibe.ch .

[1]  J. Jenkins,et al.  Prediction of Biological Targets for Compounds Using Multiple‐Category Bayesian Models Trained on Chemogenomics Databases. , 2006 .

[2]  Tudor I. Oprea,et al.  ChemProt-3.0: a global chemical biology diseases mapping , 2016, Database J. Biol. Databases Curation.

[3]  Z. Deng,et al.  Bridging chemical and biological space: "target fishing" using 2D and 3D molecular descriptors. , 2006, Journal of medicinal chemistry.

[4]  Andreas Bender,et al.  Ligand-Target Prediction Using Winnow and Naive Bayesian Algorithms and the Implications of Overall Performance Statistics , 2008, J. Chem. Inf. Model..

[5]  Lorenz C. Blum,et al.  Classification of Organic Molecules by Molecular Quantum Numbers , 2009, ChemMedChem.

[6]  Monica Campillos,et al.  HitPick: a web server for hit identification and target prediction of chemical screenings , 2013, Bioinform..

[7]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[8]  Paul Czodrowski,et al.  OCEAN: Optimized Cross rEActivity estimatioN , 2016, J. Chem. Inf. Model..

[9]  Ming Wen,et al.  Deep-Learning-Based Drug-Target Interaction Prediction. , 2017, Journal of proteome research.

[10]  A. Bender,et al.  In silico target fishing: Predicting biological targets from chemical structure , 2006 .

[11]  Lirong Wang,et al.  TargetHunter: An In Silico Target Identification Tool for Predicting Therapeutic Potential of Small Organic Molecules Based on Chemogenomic Database , 2013, The AAPS Journal.

[12]  Jean-Louis Reymond,et al.  Atom Pair 2D-Fingerprints Perceive 3D-Molecular Shape and Pharmacophores for Very Fast Virtual Screening of ZINC and GDB-17 , 2014, J. Chem. Inf. Model..

[13]  Xiaofeng Liu,et al.  ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method , 2013, Bioinform..

[14]  Andreas Bender,et al.  Recognizing Pitfalls in Virtual Screening: A Critical Review , 2012, J. Chem. Inf. Model..

[15]  Dariusz Plewczynski,et al.  Target specific compound identification using a support vector machine. , 2007, Combinatorial chemistry & high throughput screening.

[16]  Petra Schneider,et al.  Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus , 2014, Proceedings of the National Academy of Sciences.

[17]  Andreas Bender,et al.  From in silico target prediction to multi-target drug design: current databases, methods and applications. , 2011, Journal of proteomics.

[18]  Ajay N. Jain,et al.  Robust ligand-based modeling of the biological targets of known drugs. , 2006, Journal of medicinal chemistry.

[19]  Michael J. Keiser,et al.  Predicted Biological Activity of Purchasable Chemical Space , 2017, J. Chem. Inf. Model..

[20]  Vladimir Poroikov,et al.  PASS: prediction of activity spectra for biologically active substances , 2000, Bioinform..

[21]  Jean-Louis Reymond,et al.  Visualisation and subsets of the chemical universe database GDB-13 for virtual screening , 2011, J. Comput. Aided Mol. Des..

[22]  Lazaros Mavridis,et al.  Detecting Drug Promiscuity Using Gaussian Ensemble Screening , 2012, J. Chem. Inf. Model..

[23]  Jean-Louis Reymond,et al.  A Searchable Map of PubChem , 2010, J. Chem. Inf. Model..

[24]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[25]  Aurélien Grosdidier,et al.  SwissTargetPrediction: a web server for target prediction of bioactive small molecules , 2014, Nucleic Acids Res..

[26]  A. Bender,et al.  Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off‐Target Effects from Chemical Structure , 2007, ChemMedChem.

[27]  Xian Liu,et al.  TarPred: a web application for predicting therapeutic and side effect targets of chemical compounds , 2015, Bioinform..

[28]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[29]  George Papadatos,et al.  Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set , 2017, bioRxiv.

[30]  Jean-Louis Reymond,et al.  FUn: a framework for interactive visualizations of large, high‐dimensional datasets on the web , 2018, Bioinform..

[31]  Adrià Cereto-Massagué,et al.  Tools for in silico target fishing. , 2015, Methods.

[32]  Jean-Louis Reymond,et al.  The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data , 2017, Journal of Cheminformatics.

[33]  Jean-Louis Reymond,et al.  Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand-Based Virtual Screening Method. , 2015, Angewandte Chemie.

[34]  Antonio Lavecchia,et al.  In silico methods to address polypharmacology: current status, applications and future perspectives. , 2016, Drug discovery today.

[35]  G. Maggiora,et al.  Molecular similarity measures. , 2004, Methods in molecular biology.

[36]  Anders Wallqvist,et al.  Exploring Polypharmacology Using a ROCS-Based Target Fishing Approach , 2012, J. Chem. Inf. Model..

[37]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[38]  Gisbert Schneider,et al.  A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds. , 2017, Angewandte Chemie.

[39]  Jean-Louis Reymond,et al.  Visualization and Virtual Screening of the Chemical Universe Database GDB-17 , 2013, J. Chem. Inf. Model..

[40]  Pierre Baldi,et al.  Accurate and efficient target prediction using a potency-sensitive influence-relevance voter , 2015, Journal of Cheminformatics.

[41]  Richard E. Turner,et al.  A multi-label approach to target prediction taking ligand promiscuity into account , 2015, Journal of Cheminformatics.

[42]  Jean-Louis Reymond,et al.  SmilesDrawer: Parsing and Drawing SMILES-Encoded Molecular Structures Using Client-Side JavaScript , 2018, J. Chem. Inf. Model..

[43]  Andreas Bender,et al.  In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Naïve Bayes and Parzen-Rosenblatt Window , 2013, J. Chem. Inf. Model..

[44]  Mathias Dunkel,et al.  SuperPred: update on drug classification and target prediction , 2014, Nucleic Acids Res..