Consistency across multi-omics layers in a drug-perturbed gut microbial community

Multi-omics analyses are increasingly employed in microbiome studies to obtain a holistic view of molecular changes occurring within microbial communities exposed to different conditions. However, it is not always clear to what extent each omics data type contributes to our understanding of the community dynamics and whether they are concordant with each other. Here we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers, namely 16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics, and metabolomics. Using this controlled setting, we find that all omics methods with species resolution in their readouts are highly consistent in estimating relative species abundances across conditions. Furthermore, different omics methods complement each other in their ability to capture functional changes in response to the drug perturbations. For example, while nearly all omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control and metabolomics revealed a decrease in polysaccharide uptake, likely caused by Bacteroidota depletion. Taken together, our study provides insights into how multi-omics datasets can be utilised to reveal complex molecular responses to external perturbations in microbial communities.

[1]  K. Patil,et al.  Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota , 2022, Nature Reviews Microbiology.

[2]  Philipp C. Münch,et al.  In vitro interaction network of a synthetic gut bacterial community , 2021, The ISME Journal.

[3]  Ana Rita Brochado,et al.  Bioaccumulation of therapeutic drugs by human gut bacteria , 2021, Nature.

[4]  Peter Bowden,et al.  The Plasma Proteome , 2021 .

[5]  Xiaochen Bo,et al.  clusterProfiler 4.0: A universal enrichment tool for interpreting omics data , 2021, Innovation.

[6]  William W. Van Treuren,et al.  A metabolomics pipeline for the mechanistic interrogation of the gut microbiome , 2021, Nature.

[7]  N. Neff,et al.  Systematic dissection of a complex gut bacterial community , 2021, bioRxiv.

[8]  M. V. van Loosdrecht,et al.  Database-independent de novo metaproteomics of complex microbial communities. , 2021, Cell systems.

[9]  K. Patil,et al.  Towards a mechanistic understanding of reciprocal drug–microbiome interactions , 2021, Molecular systems biology.

[10]  Exene Erin Anderson,et al.  Unravelling the collateral damage of antibiotics on gut bacteria , 2021, Nature.

[11]  M. Savitski,et al.  The functional proteome landscape of Escherichia coli , 2020, Nature.

[12]  P. Manghi,et al.  Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 , 2020, bioRxiv.

[13]  H. Taguchi,et al.  Escherichia coli small heat shock protein IbpA is an aggregation‐sensor that self‐regulates its own expression at posttranscriptional levels , 2020, Molecular microbiology.

[14]  Robert L. Marshall,et al.  Chlorpromazine and Amitriptyline Are Substrates and Inhibitors of the AcrB Multidrug Efflux Pump , 2020, mBio.

[15]  Bahar Javdan,et al.  Personalized Mapping of Drug Metabolism by the Human Gut Microbiome , 2020, Cell.

[16]  Jingyuan Fu,et al.  Interaction between drugs and the gut microbiome , 2020, Gut.

[17]  Luis Pedro Coelho,et al.  Statin therapy is associated with lower prevalence of gut microbiota dysbiosis , 2020, Nature.

[18]  H. Taguchi,et al.  Escherichia coli small heat shock protein IbpA is an aggregation-sensor that self-regulates its own expression at a translational level , 2020, bioRxiv.

[19]  Se Jin Song,et al.  Consumption of Fermented Foods Is Associated with Systematic Differences in the Gut Microbiome and Metabolome , 2020, mSystems.

[20]  A. Kurilshikov,et al.  Impact of commonly used drugs on the composition and metabolic function of the gut microbiota , 2020, Nature Communications.

[21]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[22]  Luis Pedro Coelho,et al.  Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome , 2019, Cell.

[23]  L. Piddock,et al.  Do phenothiazines possess antimicrobial and efflux inhibitory properties? , 2019, FEMS microbiology reviews.

[24]  B. Henrissat,et al.  Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans , 2019, Cell.

[25]  K. Bryson,et al.  Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy , 2019, Cell.

[26]  A. Goodman,et al.  Mapping human microbiome drug metabolism by gut bacteria and their genes , 2019, Nature.

[27]  Jae Kyoung Kim,et al.  Bayesian inference of distributed time delay in transcriptional and translational regulation , 2019, bioRxiv.

[28]  Xu Zhang,et al.  Perspective and Guidelines for Metaproteomics in Microbiome Studies. , 2019, Journal of proteome research.

[29]  E. Yamashita,et al.  Structures of the wild-type MexAB–OprM tripartite pump reveal its complex formation and drug efflux mechanism , 2019, Nature Communications.

[30]  Luis Pedro Coelho,et al.  Microbial abundance, activity and population genomic profiling with mOTUs2 , 2019, Nature Communications.

[31]  Robert D. Finn,et al.  A new genomic blueprint of the human gut microbiota , 2019, Nature.

[32]  Michael Zimmermann,et al.  Separating host and microbiome contributions to drug pharmacokinetics and toxicity , 2019, Science.

[33]  E. Korzeniewska,et al.  The emergence of antimicrobial resistance in environmental strains of the Bacteroides fragilis group. , 2019, Environment international.

[34]  T. Dinan,et al.  Schizophrenia and the microbiome: Time to focus on the impact of antipsychotic treatment on the gut microbiota , 2018, The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry.

[35]  A. Phillippy,et al.  High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries , 2018, Nature Communications.

[36]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[37]  Tiphaine Martin,et al.  Gut microbiota associations with common diseases and prescription medications in a population-based cohort , 2018, Nature Communications.

[38]  Patrice D Cani Human gut microbiome: hopes, threats and promises , 2018, Gut.

[39]  Amalio Telenti,et al.  The fecal metabolome as a functional readout of the gut microbiome , 2018, Nature Genetics.

[40]  R. Ghotaslou,et al.  The role of efflux pumps in Bacteroides fragilis resistance to antibiotics. , 2018, Microbiological research.

[41]  Peer Bork,et al.  Extensive impact of non-antibiotic drugs on human gut bacteria , 2018, Nature.

[42]  P. Bork,et al.  Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies , 2018, Nature Microbiology.

[43]  P. Bork,et al.  The Human Gut Microbiome: From Association to Modulation , 2018, Cell.

[44]  Paul Wilmes,et al.  Human Gut Microbiome: Function Matters. , 2017, Trends in microbiology.

[45]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[46]  David S. Wishart,et al.  HMDB 4.0: the human metabolome database for 2018 , 2017, Nucleic Acids Res..

[47]  Mikhail Tikhonov,et al.  Emergent simplicity in microbial community assembly , 2017, Science.

[48]  E. Groisman,et al.  Navigating the Gut Buffet: Control of Polysaccharide Utilization in Bacteroides spp. , 2017, Trends in microbiology.

[49]  M. Strous,et al.  Assessing species biomass contributions in microbial communities via metaproteomics , 2017, Nature Communications.

[50]  Arthur Brady,et al.  Strains, functions and dynamics in the expanded Human Microbiome Project , 2017, Nature.

[51]  Christian von Mering,et al.  MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis , 2017, Bioinform..

[52]  David Torrents,et al.  Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug , 2017, Nature Medicine.

[53]  P. Meinicke,et al.  How to normalize metatranscriptomic count data for differential expression analysis , 2017, bioRxiv.

[54]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[55]  Jeremy K Nicholson,et al.  Gut microbiome interactions with drug metabolism, efficacy, and toxicity. , 2017, Translational research : the journal of laboratory and clinical medicine.

[56]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[57]  Judith B. Zaugg,et al.  Data-driven hypothesis weighting increases detection power in genome-scale multiple testing , 2016, Nature Methods.

[58]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[59]  J. Jansson,et al.  A multi-omic future for microbiome studies , 2016, Nature Microbiology.

[60]  Peter J. Turnbaugh,et al.  The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism , 2016, Nature Reviews Microbiology.

[61]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[62]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[63]  Rob Knight,et al.  Analysis of composition of microbiomes: a novel method for studying microbial composition , 2015, Microbial ecology in health and disease.

[64]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[65]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[66]  Karen De Roy,et al.  Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. , 2014, Environmental microbiology.

[67]  M. Mann,et al.  Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells , 2014, Nature Methods.

[68]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[69]  Hélène Touzet,et al.  SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data , 2012, Bioinform..

[70]  Matthias Mann,et al.  SprayQc: a real-time LC-MS/MS quality monitoring system to maximize uptime using off the shelf components. , 2012, Journal of proteome research.

[71]  H. Wexler Pump it up: occurrence and regulation of multi-drug efflux pumps in Bacteroides fragilis. , 2012, Anaerobe.

[72]  M. Blaser,et al.  The human microbiome: at the interface of health and disease , 2012, Nature Reviews Genetics.

[73]  C. Koch Statin therapy. , 2012, Current pharmaceutical design.

[74]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[75]  U. Sauer,et al.  Regulation and control of metabolic fluxes in microbes. , 2011, Current opinion in biotechnology.

[76]  J. Gordon,et al.  Human nutrition, the gut microbiome and the immune system , 2011, Nature.

[77]  Mariam R. Rizkallah,et al.  Expert Review : The Human Microbiome Project , Personalized Medicine , and the Birth of Pharmacomicrobiomics , 2010 .

[78]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[79]  E. Virginia Armbrust,et al.  pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree , 2010, BMC Bioinformatics.

[80]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[81]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[82]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[83]  C. Bailey,et al.  Metformin and the intestine , 2008, Diabetologia.

[84]  Hannah M. Wexler,et al.  Bacteroides: the Good, the Bad, and the Nitty-Gritty , 2007, Clinical Microbiology Reviews.

[85]  S. Levy,et al.  Molecular Mechanisms of Antibacterial Multidrug Resistance , 2007, Cell.

[86]  K. Das,et al.  Aggregation of insulin by chlorpromazine. , 2001, Biochemical pharmacology.

[87]  T. Imai [Glutamate dehydrogenase]. , 1995, Nihon rinsho. Japanese journal of clinical medicine.

[88]  A. Grossman,et al.  Regulation of the Heat-Shock Response in Escherichia coli , 1987 .

[89]  J. Kristiansen,et al.  The antibacterial effect of selected phenothiazines and thioxanthenes on slow-growing mycobacteria. , 2009, Acta pathologica, microbiologica, et immunologica Scandinavica. Section B, Microbiology.