Multiple structure recovery via robust preference analysis

Abstract This paper address the extraction of multiple models from outlier-contaminated data by exploiting preference analysis and low rank approximation. First points are represented in the preference space, then Robust PCA (Principal Component Analysis) and Symmetric NMF (Non negative Matrix Factorization) are used to break the multi-model fitting problem into many single-model problems, which in turn are tackled with an approach inspired to MSAC (M-estimator SAmple Consensus) coupled with a model-specific scale estimate. Experimental validation on public, real data-sets demonstrates that our method compares favorably with the state of the art.

[1]  Andrea Fusiello,et al.  Image-consistent patches from unstructured points with J-linkage , 2013, Image Vis. Comput..

[2]  Venu Madhav Govindu,et al.  A tensor decomposition for geometric grouping and segmentation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Haesun Park,et al.  SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering , 2014, Journal of Global Optimization.

[4]  Roberto Manduchi,et al.  CC-RANSAC: Fitting planes in the presence of multiple surfaces in range data , 2011, Pattern Recognit. Lett..

[5]  Andrea Fusiello,et al.  Robust Multiple Structures Estimation with J-Linkage , 2008, ECCV.

[6]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[7]  Tat-Jun Chin,et al.  Dynamic and hierarchical multi-structure geometric model fitting , 2011, 2011 International Conference on Computer Vision.

[8]  Jiri Matas,et al.  Fixing the Locally Optimized RANSAC , 2012, BMVC.

[9]  Tat-Jun Chin,et al.  Accelerated Hypothesis Generation for Multistructure Data via Preference Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Jiri Matas,et al.  Two-view geometry estimation unaffected by a dominant plane , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[12]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[13]  Amnon Shashua,et al.  A unifying approach to hard and probabilistic clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  Roberto Tron RenVidal A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[17]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[18]  Luc Van Gool,et al.  Multibody Structure-from-Motion in Practice , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[21]  Andrea Fusiello,et al.  Robust Multiple Model Fitting with Preference Analysis and Low-rank Approximation , 2015, BMVC.

[22]  Venu Madhav Govindu,et al.  Efficient Higher-Order Clustering on the Grassmann Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[23]  Frank Dellaert,et al.  GroupSAC: Efficient consensus in the presence of groupings , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[24]  Andrea Fusiello,et al.  T-Linkage: A Continuous Relaxation of J-Linkage for Multi-model Fitting , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Tat-Jun Chin,et al.  Clustering with Hypergraphs: The Case for Large Hyperedges , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[27]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[28]  Guillermo Sapiro,et al.  A Biclustering Framework for Consensus Problems , 2014, SIAM J. Imaging Sci..

[29]  Andrew Zisserman,et al.  Robust detection of degenerate configurations for the fundamental matrix , 1995, Proceedings of IEEE International Conference on Computer Vision.

[30]  Pietro Perona,et al.  Beyond pairwise clustering , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Amnon Shashua,et al.  Doubly Stochastic Normalization for Spectral Clustering , 2006, NIPS.

[32]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[33]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[34]  Yuri Boykov,et al.  Energy-Based Geometric Multi-model Fitting , 2012, International Journal of Computer Vision.

[35]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[36]  Hiroshi Kawakami,et al.  Detection of Planar Regions with Uncalibrated Stereo using Distributions of Feature Points , 2004, BMVC.

[37]  B. S. Manjunath,et al.  The multiRANSAC algorithm and its application to detect planar homographies , 2005, IEEE International Conference on Image Processing 2005.

[38]  Jiri Matas,et al.  Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[39]  Alexander M. Bronstein,et al.  Inverting RANSAC: Global model detection via inlier rate estimation , 2015, CVPR.

[40]  Charles V. Stewart,et al.  Bias in robust estimation caused by discontinuities and multiple structures , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[42]  Matthew Turk,et al.  EVSAC: Accelerating Hypotheses Generation by Modeling Matching Scores with Extreme Value Theory , 2013, 2013 IEEE International Conference on Computer Vision.

[43]  Tat-Jun Chin,et al.  Interacting Geometric Priors For Robust Multimodel Fitting , 2014, IEEE Transactions on Image Processing.

[44]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Olga Veksler,et al.  Fast Fusion Moves for Multi-model Estimation , 2012, ECCV.

[46]  Jiri Matas,et al.  Randomized RANSAC with T(d, d) test , 2002, BMVC.

[47]  Emmanuel J. Candès,et al.  Robust Subspace Clustering , 2013, ArXiv.

[48]  Jana Kosecka,et al.  Nonparametric Estimation of Multiple Structures with Outliers , 2006, WDV.

[49]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[50]  James H. Elder,et al.  Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery , 2008, ECCV.

[51]  Peter Meer,et al.  Generalized projection based M-estimator: Theory and applications , 2011, CVPR 2011.

[52]  Tat-Jun Chin,et al.  The Random Cluster Model for robust geometric fitting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.