Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator

We establish the convergence of a class of numerical algorithms, known as dynamic mode decomposition (DMD), for computation of the eigenvalues and eigenfunctions of the infinite-dimensional Koopman operator. The algorithms act on data coming from observables on a state space, arranged in Hankel-type matrices. The proofs utilize the assumption that the underlying dynamical system is ergodic. This includes the classical measure-preserving systems, as well as systems whose attractors support a physical measure. Our approach relies on the observation that vector projections in DMD can be used to approximate the function projections by the virtue of Birkhoff's ergodic theorem. Using this fact, we show that applying DMD to Hankel data matrices in the limit of infinite-time observations yields the true Koopman eigenfunctions and eigenvalues. We also show that the singular value decomposition, which is the central part of most DMD algorithms, converges to the proper orthogonal decomposition of observables. We use...

[1]  Rudiyanto Gunawan,et al.  Sensitivity Measures for Oscillating Systems: Application to Mammalian Circadian Gene Network , 2008, IEEE Transactions on Automatic Control.

[2]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[3]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[4]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[5]  Igor Mezic,et al.  Koopman Operator Spectrum and Data Analysis , 2017, 1702.07597.

[6]  D. Giannakis Data-driven spectral decomposition and forecasting of ergodic dynamical systems , 2015, Applied and Computational Harmonic Analysis.

[7]  C. Caramanis What is ergodic theory , 1963 .

[8]  KARL PETERSEN,et al.  LECTURES ON ERGODIC THEORY , 2002 .

[9]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[10]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[11]  Yoshihiko Susuki,et al.  A prony approximation of Koopman Mode Decomposition , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[12]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[13]  I. Mezić,et al.  On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. , 2012, Chaos.

[14]  Hassan Arbabi,et al.  Study of dynamics in post-transient flows using Koopman mode decomposition , 2017, 1704.00813.

[15]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[16]  Igor Mezic,et al.  Building energy modeling: A systematic approach to zoning and model reduction using Koopman Mode Analysis , 2015 .

[17]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[18]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[19]  Ian Melbourne,et al.  The Lorenz Attractor is Mixing , 2005 .

[20]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[21]  Diana Bohm,et al.  Elementary Functional Analysis , 2016 .

[22]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[23]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[24]  Steven L. Brunton,et al.  Chaos as an intermittently forced linear system , 2016, Nature Communications.

[25]  João Pedro Hespanha,et al.  Event-based minimum-time control of oscillatory neuron models , 2009, Biological Cybernetics.

[26]  Steven L. Brunton,et al.  Sparse Identification of Nonlinear Dynamics with Control (SINDYc) , 2016, 1605.06682.

[27]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Eisner,et al.  Ergodic Theorems , 2019, Probability.

[29]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[30]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[31]  Igor Mezic,et al.  Study of dynamics in unsteady flows using Koopman mode decomposition , 2017 .

[32]  Steven L. Brunton,et al.  Compressive sampling and dynamic mode decomposition , 2013, 1312.5186.

[33]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[34]  Igor Mezic,et al.  On applications of the spectral theory of the Koopman operator in dynamical systems and control theory , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[35]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[37]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[38]  R. K. Singh,et al.  Composition operators on function spaces , 1993 .

[39]  Anders C. Hansen,et al.  Infinite-dimensional numerical linear algebra: theory and applications , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Stefan Klus,et al.  On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.

[41]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[42]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[43]  P. Strevens Iii , 1985 .

[44]  I. Mezić,et al.  Ergodic theory and experimental visualization of invariant sets in chaotically advected flows , 2002 .

[45]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[46]  Larisa Beilina,et al.  Numerical Linear Algebra: Theory and Applications , 2017 .

[47]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[48]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[49]  Steven L. Brunton,et al.  Multiresolution Dynamic Mode Decomposition , 2015, SIAM J. Appl. Dyn. Syst..

[50]  I. Mezic,et al.  Nonlinear Koopman Modes and Coherency Identification of Coupled Swing Dynamics , 2011, IEEE Transactions on Power Systems.

[51]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[52]  F. Takens Detecting strange attractors in turbulence , 1981 .