Ultrasonic Power/Data Telemetry and Neural Stimulator With OOK-PM Signaling

An ultrasonic power/data telemetry and a neural stimulator are presented. An on-off keying with pulse modulation is adopted for ultrasonic signal transmission. The ultrasonic power is used to charge a battery. The ultrasonic data are used for neural stimulation, and an animal study is also demonstrated. The range of the stimulation current is 0-640 μA. The frequency of the stimulation current pulse is from 60 to 265 Hz. This ultrasonic power/data telemetry with a neural stimulator is fabricated in a 0.35- μm CMOS technology. It occupies the area of 4.4 mm2. The total power dissipation is 2 mW with a stimulation current of 140 μA and a stimulation frequency of 265 Hz.

[1]  You-Yin Chen,et al.  A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[2]  Shen-Iuan Liu,et al.  Ultrasonic telemetry and neural stimulator with FSK-PWM signaling , 2013, 2013 International Symposium onVLSI Design, Automation, and Test (VLSI-DAT).

[3]  Wei Chen,et al.  A semi-passive UHF RFID tag with on-chip temperature sensor , 2010, IEEE Custom Integrated Circuits Conference 2010.

[4]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[5]  G.K. Balachandran,et al.  A 110 nA Voltage Regulator System With Dynamic Bandwidth Boosting for RFID Systems , 2006, IEEE Journal of Solid-State Circuits.

[6]  B. N. Popov,et al.  Studies on Capacity Fade of Lithium-Ion Batteries , 2000 .

[7]  Mohamad Sawan,et al.  A Highly Flexible System for Microstimulation of the Visual Cortex: Design and Implementation , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[8]  W. Liu,et al.  A neuro-stimulus chip with telemetry unit for retinal prosthetic device , 2000, IEEE Journal of Solid-State Circuits.

[9]  J-Y Tsai,et al.  Ultrasonic wireless power and data communication for neural stimulation , 2011, 2011 IEEE International Ultrasonics Symposium.

[10]  Mikito Nagata,et al.  Miniature pin-type lithium batteries for medical applications , 2005 .

[11]  Andreas Demosthenous,et al.  A Stimulator ASIC Featuring Versatile Management for Vestibular Prostheses , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[12]  M. Ghovanloo,et al.  A Wireless Implantable Multichannel Microstimulating System-on-a-Chip With Modular Architecture , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[13]  Eric M. Yeatman,et al.  Ultrasonic vs. Inductive Power Delivery for Miniature Biomedical Implants , 2010, 2010 International Conference on Body Sensor Networks.

[14]  Yeong-Ray Wen,et al.  Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS SoC , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[15]  Scott K. Arfin,et al.  Wireless neural stimulation in freely behaving small animals. , 2009, Journal of neurophysiology.

[16]  Shen-Iuan Liu,et al.  Capacitor-free low dropout regulators using nested Miller compensation with active resistor and 1-bit programmable capacitor array , 2008, IET Circuits Devices Syst..

[17]  Maysam Ghovanloo,et al.  A Wide-Band Power-Efficient Inductive Wireless Link for Implantable Microelectronic Devices Using Multiple Carriers , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  K. Leung,et al.  A CMOS voltage reference based on weighted /spl Delta/V/sub GS/ for CMOS low-dropout linear regulators , 2003 .