History, Evolution, and Future Status of Energy Storage

Advanced energy storage has been a key enabling technology for the portable electronics explosion. The lithium and Ni-MeH battery technologies are less than 40 years old and have taken over the electronics industry and are on the same track for the transportation industry and the utility grid. In this review, energy storage from the gigawatt pumped hydro systems to the smallest watt-hour battery are discussed, and the future directions predicted. If renewable energy, or even lower cost energy, is to become prevalent energy storage is a critical component in reducing peak power demands and the intermittent nature of solar and wind power. An electric economy will demand more electrification of the transportation sector and it is likely that all vehicles sold by the end of this decade will have some level of hybridization. Energy storage capabilities in conjunction with the smart grid are expected to see a massive leap forward over the next 25 years.

[1]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[2]  Yoshio Nishi,et al.  Performance of the First Lithium Ion Battery and Its Process Technology , 2007 .

[3]  M. Stanley Whittingham,et al.  Fundamentals of Materials for Energy and Environmental Sustainability: Electrochemical energy storage: batteries and capacitors , 2011 .

[4]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[5]  W. Marsden I and J , 2012 .

[6]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[7]  M Cais,et al.  Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors , 1971, Science.

[8]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[9]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[10]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[11]  Jiajun Chen,et al.  Hydrothermal synthesis of lithium iron phosphate , 2006 .

[12]  Jason Graetz,et al.  Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. , 2011, Journal of the American Chemical Society.

[13]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[14]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[15]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[16]  J. Eto,et al.  Understanding the cost of power interruptions to U.S. electricity consumers , 2004 .

[17]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[18]  M. Whittingham,et al.  LITHIUM BATTERY SYSTEMS , 1980 .

[19]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[20]  Trevor A. Tyson,et al.  Nanospheres of a new intermetallic FeSn5 phase: synthesis, magnetic properties and anode performance in Li-ion batteries. , 2011, Journal of the American Chemical Society.

[21]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[22]  M. Stanley Whittingham,et al.  Materials science in energy technology , 1979 .

[23]  Shailesh Upreti,et al.  Electrochemical performance of Al–Si–graphite composite as anode for lithium–ion batteries , 2011 .

[24]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[25]  M. Whittingham,et al.  Characterization of Amorphous and Crystalline Tin–Cobalt Anodes , 2007 .

[26]  Jiajun Chen,et al.  The Hydrothermal Synthesis of Lithium Iron Phosphate , 2006 .

[27]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[28]  Ruigang Zhang,et al.  Tin-Iron Based Nano-Materials as Anodes for Li-Ion Batteries , 2011 .

[29]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[30]  M. Whittingham,et al.  Stability and Rate Capability of Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries , 2011 .

[31]  Peter Y. Zavalij,et al.  ε-VOPO4: Electrochemical Synthesis and Enhanced Cathode Behavior , 2005 .

[32]  T. Tyson,et al.  Nanospheres of a New Intermetallic FeSn5 Phase: Synthesis, Magnetic Properties and Anode Performance in Li‐Ion Batteries. , 2011 .

[33]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[34]  M. Stanley Whittingham,et al.  THE ROLE OF TERNARY PHASES IN CATHODE REACTIONS , 1976 .

[35]  H. A. Christopher,et al.  Lithium‐Aluminum Electrode , 1977 .

[36]  R. Chianelli,et al.  Microscopic studies of transition metal chalcogenides , 1976 .

[37]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[38]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[39]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[40]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[41]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .