Pitch Control Effectiveness of the Avian Elbow and Wrist via a Numerical Lifting Line Analysis

[1]  David Lentink,et al.  How pigeons couple three-dimensional elbow and wrist motion to morph their wings , 2017, Journal of The Royal Society Interface.

[2]  David Lentink,et al.  The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles and sensors , 2015 .

[3]  Daniel J. Inman,et al.  Experimental testing of spanwise morphing trailing edge concept , 2013, Smart Structures.

[4]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[5]  Tyson L Hedrick,et al.  Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems , 2008, Bioinspiration & biomimetics.

[6]  J. L. Leeuwen,et al.  How swifts control their glide performance with morphing wings , 2006, Nature.

[7]  E. V. van Loon,et al.  Energetic influence on gull flight strategy selection , 2006, Journal of Experimental Biology.

[8]  Tianshu Liu,et al.  Avian Wing Geometry and Kinematics , 2006 .

[9]  Barry S. Lazos,et al.  Biologically Inspired Fixed-Wing Configuration Studies , 2005 .

[10]  Brian Sanders,et al.  Aerodynamic Performance of the Smart Wing Control Effectors , 2004 .

[11]  D. Snyder,et al.  Modern Adaptation of Prandtl's Classic Lifting-Line Theory , 2000 .

[12]  M. Fenton,et al.  Convergence in foraging strategies by two morphologically and phylogenetically distinct nocturnal aerial insectivores , 1991 .

[13]  J. Anderson,et al.  Numerical lifting line theory applied to drooped leading-edge wings below and above stall , 1980 .

[14]  W. Brewster Notes on the Flight of Gulls , 1912 .