Multi-view coding for image-based rendering using 3-D scene geometry

To store and transmit the large amount of image data necessary for Image-based Rendering (IBR), efficient coding schemes are required. This paper presents two different approaches which exploit three-dimensional scene geometry for multi-view compression. In texture-based coding, images are converted to view-dependent texture maps for compression. In model-aided predictive coding, scene geometry is used for disparity compensation and occlusion detection between images. While both coding strategies are able to attain compression ratios exceeding 2000:1, individual coding performance is found to depend on the accuracy of the available geometry model. Experiments with real-world as well as synthetic image sets show that texture-based coding is more sensitive to geometry inaccuracies than predictive coding. A rate-distortion theoretical analysis of both schemes supports these findings. For reconstructed approximate geometry models, model-aided predictive coding performs best, while texture-based coding yields superior coding results if scene geometry is exactly known.

[1]  Marcus A. Magnor,et al.  Hierarchical coding of light fields with disparity maps , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[2]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[3]  Kiriakos N. Kutulakos Shape from the light field boundary , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  P. Debevec,et al.  Image-based modeling, rendering, and lighting , 2002, IEEE Computer Graphics and Applications.

[5]  Leonard McMillan,et al.  Plenoptic Modeling: An Image-Based Rendering System , 2023 .

[6]  Xin Tong,et al.  Coding of multi-view images for immersive viewing , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[7]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[8]  Jitendra Malik,et al.  Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach , 1996, SIGGRAPH.

[9]  Shenchang Eric Chen,et al.  QuickTime VR: an image-based approach to virtual environment navigation , 1995, SIGGRAPH.

[10]  Bernd Girod,et al.  Efficiency analysis of multihypothesis motion-compensated prediction for video coding , 2000, IEEE Trans. Image Process..

[11]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[12]  Marcus A. Magnor,et al.  Progressive Compression and Rendering of Light Fields , 2000, VMV.

[13]  Yizhou Yu,et al.  Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping , 1998, Rendering Techniques.

[14]  Peter Eisert Model-Based Camera Calibration Using Analysis by Synthesis Techniques , 2002, VMV.

[15]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.

[16]  Peter Eisert,et al.  Model-aided coding of multi-viewpoint image data , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[17]  Marcus A. Magnor,et al.  Data compression for light-field rendering , 2000, IEEE Trans. Circuits Syst. Video Technol..

[18]  Jin Li,et al.  Compression and rendering of concentric mosaics with reference block codec (RBC) , 2000, Visual Communications and Image Processing.

[19]  Harry Shum,et al.  Rendering with concentric mosaics , 1999, SIGGRAPH.

[20]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[21]  Peter Eisert,et al.  Automatic reconstruction of stationary 3-D objects from multiple uncalibrated camera views , 2000, IEEE Trans. Circuits Syst. Video Technol..

[22]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[23]  Marcus A. Magnor Geometry adaptive multi-view coding techniques for image based rendering , 2001, Berichte aus der Kommunikationstechnik.

[24]  Monson H. Hayes,et al.  Compression of multi-view images , 1994, Proceedings of 1st International Conference on Image Processing.

[25]  Paul Lalonde,et al.  Interactive Rendering of Wavelet Projected Light Fields , 1999, Graphics Interface.

[26]  Wolfgang Straßer,et al.  The Wavelet Stream: Interactive Multi Resolution Light Field Rendering , 2001, Rendering Techniques.

[27]  Bernd Girod,et al.  Fully Embedded Coding of Triangle Meshes , 1999 .

[28]  Hans-Peter Seidel,et al.  High-Quality Interactive Lumigraph Rendering Through Warping , 2000, Graphics Interface.

[29]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[30]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[31]  Insung Ihm,et al.  Rendering of spherical light fields , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[32]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.

[33]  Steven M. Seitz,et al.  View morphing , 1996, SIGGRAPH.

[34]  Reinhard Koch,et al.  Metric 3D Surface Reconstruction from Uncalibrated Image Sequences , 1998, SMILE.

[35]  Hans-Peter Seidel,et al.  A Warping-based Refinement of Lumigraphs , 1999 .

[36]  Marcus A. Magnor,et al.  Model-based coding of multiviewpoint imagery , 2000, Visual Communications and Image Processing.

[37]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[38]  Xin Tong,et al.  Interactive view synthesis from compressed light fields , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[39]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[40]  Harry Shum,et al.  On the compression of image based rendering scene , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[41]  Reinhard Koch,et al.  3D Structure from Multiple Images of Large-Scale Environments , 1998, Lecture Notes in Computer Science.

[42]  David Salesin,et al.  Surface light fields for 3D photography , 2000, SIGGRAPH.

[43]  Bernd Girod,et al.  The Efficiency of Motion-Compensating Prediction for Hybrid Coding of Video Sequences , 1987, IEEE J. Sel. Areas Commun..

[44]  Michael Bosse,et al.  Unstructured lumigraph rendering , 2001, SIGGRAPH.

[45]  Bernd Girod,et al.  Theoretical analysis of geometry inaccuracy for light field compression , 2002, Proceedings. International Conference on Image Processing.

[46]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[47]  Marcus A. Magnor,et al.  Sensitivity of image-based and texture-based multi-view coding to model accuracy , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[48]  Gavin S. P. Miller,et al.  Lazy Decompression of Surface Light Fields for Precomputed Global Illumination , 1998, Rendering Techniques.

[49]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[50]  Daniel Cohen-Or,et al.  Deep compression for streaming texture intensive animations , 1999, SIGGRAPH.

[51]  Yunnan Wu,et al.  Rendering of 3D-wavelet-compressed concentric mosaic scenery with progressive inverse wavelet synthesis (PIWS) , 2000, Visual Communications and Image Processing.

[52]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[53]  Marcus A. Magnor,et al.  Two approaches to incorporate approximate geometry into multi-view image coding , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[54]  Lance Williams,et al.  View Interpolation for Image Synthesis , 1993, SIGGRAPH.

[55]  Steven M. Seitz,et al.  Photorealistic Scene Reconstruction by Voxel Coloring , 1997, International Journal of Computer Vision.