Low invasion success of an invasive cyanobacterium in a chlorophyte dominated lake

Biological invasions are a major threat to biodiversity and ecosystem functioning. Successful invasions depend on the interplay of multiple abiotic and biotic factors, however, the process of the invasion itself is often overlooked. The temporal variation of environmental factors suggests that a ‘window of opportunity’ for successful invasions exists. Especially aquatic habitats, like temperate lakes, undergo pronounced seasonal fluctuations and show temporally varying environmental conditions in e.g. nutrient availability, temperature and the composition of the resident community including competitors and consumers. We experimentally tested if an invasion window for the globally invasive cyanobacterium Cylindrospermopsis raciborskii exists. From May to September, we determined the invasion success of C. raciborskii in laboratory mesocosms with natural lake water. Although the invasion success was generally low, the invasiveness varied among months and differed in total invasive biomass, net development and final share of C. raciborskii in the community. During the first days, C. raciborskii strongly declined and this initial, short-term decline was independent of the ambient consumptive pressure. These results are in contrast to laboratory studies in which C. raciborskii successfully invaded, suggesting that a complex natural system develops a resistance to invasions.

[1]  Erik Jeppesen,et al.  Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes , 1994 .

[2]  W. M. Lonsdale,et al.  GLOBAL PATTERNS OF PLANT INVASIONS AND THE CONCEPT OF INVASIBILITY , 1999 .

[3]  L. Rudstam,et al.  Length-weight regressions for zooplankton biomass calculations – A review and a suggestion for standard equations , 2011 .

[4]  N. Welschmeyer Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments , 1994 .

[5]  R. B. Jackson,et al.  Global biodiversity scenarios for the year 2100. , 2000, Science.

[6]  M. S. Hoddle,et al.  Population biology of invasive species. , 2001 .

[7]  David P. Hamilton,et al.  Recent invader or indicator of environmental change? A phylogenetic and ecological study of Cylindrospermopsis raciborskii in New Zealand , 2014 .

[8]  C. Bernard,et al.  CYLINDROSPERMOPSIS RACIBORSKII (CYANOBACTERIA) INVASION AT MID‐LATITUDES: SELECTION, WIDE PHYSIOLOGICAL TOLERANCE, ORGLOBALWARMING? 1 , 2004 .

[9]  M. Pagano,et al.  Can tropical freshwater zooplankton graze efficiently on cyanobacteria? , 2011, Hydrobiologia.

[10]  Louie H. Yang,et al.  What can we learn from resource pulses? , 2008, Ecology.

[11]  A. Nicholls Growth in the Australian 'salmon' Arripis trutta (Bloch & Schneider) , 1973 .

[12]  L. Aarssen High productivity in grassland ecosystems : effected by species diversity or productive species ? , 1997 .

[13]  L. Hansson,et al.  Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? , 2015 .

[14]  D. Bird,et al.  DOES ALLELOPATHY CONTRIBUTE TO CYLINDROSPERMOPSIS RACIBORSKII (CYANOBACTERIA) BLOOM OCCURRENCE AND GEOGRAPHIC EXPANSION? 1 , 2007 .

[15]  C. Reynolds,et al.  Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes , 1998, Hydrobiologia.

[16]  David Tilman,et al.  Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  I. Telesh,et al.  Carbon content of some freshwater rotifers , 2004, Hydrobiologia.

[18]  E. Litchman Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. , 2010, Ecology letters.

[19]  U. Gaedke,et al.  The intermediate disturbance hypothesis—species diversity or functional diversity? , 2001 .

[20]  Ulrich Sommer,et al.  The PEG-model of seasonal succession of planktonic events in fresh waters , 1986, Archiv für Hydrobiologie.

[21]  H. Paerl,et al.  Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. , 2012, FEMS microbiology ecology.

[22]  G. Salerno,et al.  The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria) , 2018 .

[23]  Donald A. Jackson,et al.  Meta-analysis suggests biotic resistance in freshwater environments is driven by consumption rather than competition , 2014 .

[24]  J. Memmott,et al.  The effect of propagule size on the invasion of an alien insect , 2005 .

[25]  J. Soininen,et al.  Distribution of invasive Cylindrospermopsis raciborskii in the East-Central Europe is driven by climatic and local environmental variables. , 2017, FEMS microbiology ecology.

[26]  L. Meester,et al.  The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms , 2002 .

[27]  J. Conroy,et al.  Cylindrospermopsis in Lake Erie: Testing its Association with Other Cyanobacterial Genera and Major Limnological Parameters , 2007 .

[28]  M. Lürling,et al.  Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae , 2010 .

[29]  B. Neilan,et al.  Varied Diazotrophies, Morphologies, and Toxicities of Genetically Similar Isolates of Cylindrospermopsis raciborskii(Nostocales, Cyanophyceae) from Northern Australia , 2001, Applied and Environmental Microbiology.

[30]  G. Eaglesham,et al.  First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. , 2003, Ecotoxicology and environmental safety.

[31]  Diogo Falcão,et al.  Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought , 2000 .

[32]  M. Burford,et al.  Nitrogen fixation by the diazotroph Cylindrospermopsis raciborskii (Cyanophyceae) , 2016, Journal of phycology.

[33]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .

[34]  G. Braus,et al.  One Juliet and four Romeos: VeA and its methyltransferases , 2015, Front. Microbiol..

[35]  A. Duncan,et al.  The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies , 1985 .

[36]  M. Stockenreiter,et al.  Directed diversity manipulations within natural phytoplankton communities , 2017 .

[37]  Jarrett E. K. Byrnes,et al.  Species diversity, invasion success, and ecosystem functioning: disentangling the influence of resource competition, facilitation, and extrinsic factors , 2006 .

[38]  M. Penner,et al.  Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. , 2015, FEMS microbiology letters.

[39]  U. Gaedke,et al.  Productivity, herbivory, and species traits rather than diversity influence invasibility of experimental phytoplankton communities , 2010, Oecologia.

[40]  O. Sarnelle Initial conditions mediate the interaction between Daphnia and bloom‐forming cyanobacteria , 2007 .

[41]  Mark A. Davis,et al.  Experimental support for a resource-based mechanistic model of invasibility , 2001 .

[42]  L. H. S. Silva,et al.  Toxicity Overrides Morphology on Cylindrospermopsis raciborskii Grazing Resistance to the Calanoid Copepod Eudiaptomus gracilis , 2016, Microbial Ecology.

[43]  C. Bernard,et al.  Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France. , 2002, Water research.

[44]  Gregory G. Smith,et al.  Developmental and gut‐related changes to microbiomes of the cultured juvenile spiny lobster Panulirus ornatus , 2017, FEMS microbiology ecology.

[45]  J. Darling,et al.  Paradox lost: genetic diversity and the success of aquatic invasions. , 2007, Trends in ecology & evolution.

[46]  J. Padisák Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii : a morphology and life-cycle based method , 2003 .

[47]  Samuel Cirés,et al.  Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions , 2010 .

[48]  M. Lürling,et al.  Daphnia magna feeding on Cylindrospermopsis raciborskii: the role of food composition, filament length and body size. , 2010 .

[49]  J. Soininen,et al.  Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range , 2012 .

[50]  J. Padisák Estimation of minimum sedimentary inoculum (akinete) pool of Cylindrospermopsis raciborskii: a morphology and life-cycle based method , 2004, Hydrobiologia.

[51]  G. Gorsky,et al.  C and N composition of some northwestern Mediterranean zooplankton and micronekton species , 1988 .

[52]  B. Bergman,et al.  Dinitrogen Fixation Is Restricted to the Terminal Heterocysts in the Invasive Cyanobacterium Cylindrospermopsis raciborskii CS-505 , 2013, PloS one.

[53]  L. M. Rangel,et al.  Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. , 2016, Harmful algae.

[54]  Mark A. Davis,et al.  Fluctuating resources in plant communities: a general theory of invasibility , 2000 .

[55]  B. Bergman,et al.  Intercellular transfer along the trichomes of the invasive terminal heterocyst forming cyanobacterium Cylindrospermopsis raciborskii CS-505. , 2015, FEMS microbiology letters.

[56]  W. Lampert Laboratory studies on zooplankton‐cyanobacteria interactions , 1987 .

[57]  V. Vasconcelos,et al.  Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species , 2015, Front. Microbiol..

[58]  M. Présing,et al.  Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures , 2000 .

[59]  U. Gaedke,et al.  Warming-induced changes in predation, extinction and invasion in an ectotherm food web , 2015, Oecologia.

[60]  Paul B. Hamilton,et al.  The occurrence of the cyanobacterium Cylindrospermopsis raciborskii in Constance Lake: an exotic cyanoprokaryote new to Canada , 2005 .

[61]  Chad T. Harvey,et al.  Detection of a colonizing, aquatic, non‐indigenous species , 2009 .

[62]  C. Kruk,et al.  Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to Latitude 34°53'S: taxonomical and ecological features in Uruguayan eutrophic lakes , 2008 .

[63]  R. Brüggemann,et al.  Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions , 2007, Oecologia.

[64]  Emily S. J. Rauschert,et al.  Moving from pattern to process: Coexistence mechanisms under intermediate disturbance regimes , 2004 .

[65]  E. Marschall,et al.  How Non-native Species in Lake Erie Influence Trophic Transfer of Mercury and Lead to Top Predators , 2007 .

[66]  Miquel Lürling,et al.  Understanding cyanobacteria‐zooplankton interactions in a more eutrophic world , 2014 .

[67]  W. R. Demott,et al.  Optimal foraging theory as a predictor of chemically mediated food selection by suspension‐feeding copepods , 1989 .

[68]  M. Présing,et al.  Nitrogen uptake and fixation in the cyanobacterium Cylindrospermopsis raciborskii under different nitrogen conditions , 2003, Hydrobiologia.

[69]  M. Saker,et al.  Occurrence of blooms of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju in a north Queensland domestic water supply , 2001 .

[70]  G. Weithoff,et al.  The invasion success of the cyanobacterium Cylindrospermopsis raciborskii in experimental mesocosms: genetic identity, grazing loss, competition and biotic resistance , 2017 .

[71]  Guntram Weithoff,et al.  High local trait variability in a globally invasive cyanobacterium , 2017 .

[72]  H. Paerl,et al.  Zooplankton community structure, micro-zooplankton grazing impact, and seston energy content in the St. Johns river system, Florida as influenced by the toxic cyanobacterium Cylindrospermopsisraciborskii , 2005, Hydrobiologia.

[73]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[74]  M. Burford,et al.  The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir , 2006 .

[75]  E. Dibble,et al.  Ecological mechanisms of invasion success in aquatic macrophytes , 2014, Hydrobiologia.

[76]  Helmut Hillebrand,et al.  Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. , 2007, Ecology letters.

[77]  Judit Padisák,et al.  Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium : worldwide distribution and review of its ecology , 1997 .

[78]  The effects of phosphorus and temperature on the competitive success of an invasive cyanobacterium , 2017, Aquatic Ecology.

[79]  Elena Litchman,et al.  Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria , 2015, Hydrobiologia.

[80]  J. Padisák,et al.  What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? , 2012, FEMS microbiology ecology.