Adaptive optics: Neural network wavefront sensing, reconstruction, and prediction

We introduce adaptive optics as a technique to improve images taken by ground-based telescopes through a turbulent blurring atmosphere. Adaptive optics rapidly senses the wavefront distortion referenced to either a natural or laser guidestar, and then applies an equal but opposite profile to an adaptive mirror. In this paper, we summarize the application of neural networks in adaptive optics. First, we report previous work on employing multi-layer perceptron neural networks and back-propagation to learn how to sense and reconstruct the wavefront. Second, we show how neural networks can be used to predict the wavefront, and compare the neural networks’ predictive power in the presence of noise to that of linear networks also trained with back-propagation. In our simulations, we find that the linear network predictors train faster, they have lower residual phase variance, and they are much more tolerant to noise than the non-linear neural network predictors, though both offer improvement over no prediction. We conclude with comments on how neural networks may evolve over the next few years as adaptive optics becomes a more routine tool on the new large astronomical telescopes.

[1]  Terry S. Mast,et al.  Performance of the W.M. Keck telescope active mirror control system , 1994, Astronomical Telescopes and Instrumentation.

[2]  Todd K. Barrett,et al.  Shearing interferometry for laser-guide-star atmospheric correction at large D/r 0 , 1994 .

[3]  Leonard Topper,et al.  Turbulence : classic papers on statistical theory , 1961 .

[4]  F Roddier,et al.  Curvature sensing and compensation: a new concept in adaptive optics. , 1988, Applied optics.

[5]  Ge Jian Sodium laser guide star technique, spectroscopy and imaging with adaptive optics , 1998 .

[6]  W J Wild Predictive optimal estimators for adaptive-optics systems. , 1996, Optics letters.

[7]  James W. Beletic,et al.  Sodium Beacon Used for Adaptive Optics on the Multiple Mirror Telescope , 1994 .

[8]  S. Lipson,et al.  Monolithic piezoelectric mirror for wavefront correction , 1974 .

[9]  Geoffrey Ingram Taylor,et al.  Statistical theory of turbulenc , 1935, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences.

[10]  James H. Burge,et al.  Fabrication of the 6.5-m primary mirror for the Multiple Mirror Telescope Conversion , 1997, Other Conferences.

[11]  R. Muller,et al.  Real-time correction of atmospherically degraded telescope images through image sharpening , 1974 .

[12]  Donald T. Gavel,et al.  Sodium laser guide star system at Lawrence Livermore National Laboratory: system description and experimental results , 1994, Astronomical Telescopes and Instrumentation.

[13]  Gleb Vdovin Model of an adaptive optical system controlled by a neural network , 1995 .

[14]  James Roger P. Angel Wavefront reconstruction by machine learning using the delta rule , 1994, Astronomical Telescopes and Instrumentation.

[15]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[16]  M. Vorontsov,et al.  The principles of adaptive optics , 1985 .

[17]  Ty Martinez A Continuous Wave Dye Laser for Use in Astronomical Adaptive Optics , 1998 .

[18]  W. Welford Principles of optics (5th Edition): M. Born, E. Wolf Pergamon Press, Oxford, 1975, pp xxviii + 808, £9.50 , 1975 .

[19]  James Roger P. Angel,et al.  Solid state Raman laser for MMT sodium guide star , 1998, Astronomical Telescopes and Instrumentation.

[20]  W J Wild,et al.  Sparse matrix wave-front estimators for adaptive-optics systems for large ground-based telescopes. , 1995, Optics letters.

[21]  J. Meyer–Arendt INTRODUCTION TO CLASSICAL AND MODERN OPTICS , 1984 .

[22]  David G. Sandler,et al.  Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes , 1994 .

[23]  W. Happer,et al.  ATMOSPHERIC-TURBULENCE COMPENSATION BY RESONANT OPTICAL BACKSCATTERING FROM THE SODIUM LAYER IN THE UPPER ATMOSPHERE , 1994 .

[24]  John M. Hill,et al.  Toward first light for the 6.5-m MMT Telescope , 1997, Other Conferences.

[25]  Darryl P. Greenwood,et al.  Bandwidth specification for adaptive optics systems , 1977 .

[26]  R. Q. Fugate,et al.  Use of a neural network to control an adaptive optics system for an astronomical telescope , 1991, Nature.

[27]  James Roger P. Angel,et al.  First Astronomical Images Sharpened with Adaptive Optics using a Sodium Laser Guide Star , 1998 .

[28]  E. P. Wallner Optimal wave-front correction using slope measurements , 1983 .

[29]  Michael Lloyd-Hart Novel techniques of wavefront sensing for adaptive optics with array telescopes using an artificial neural network. , 1992 .

[30]  E K Hege,et al.  Evidence of a chaotic attractor in star-wander data. , 1991, Optics letters.

[31]  Peter Strobach,et al.  Linear Prediction Theory: A Mathematical Basis for Adaptive Systems , 1990 .

[32]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[33]  David L. Fried,et al.  Atmospheric Turbulence Optical Effects: Understanding the Adaptive-Optics Implications , 1994 .

[34]  R H Freeman,et al.  High-speed deformable mirror system. , 1982, Applied optics.

[35]  E. Bin‐Nun,et al.  Mirror with Adjustable Radius of Curvature , 1973 .

[36]  David G. Sandler,et al.  Optimization and Performance of Adaptive Optics for Imaging Extrasolar Planets , 1995 .

[37]  S. Mikoshiba,et al.  Laser Mirror with Variable Focal Length , 1973 .

[38]  E. Ribak,et al.  Turbulence-degraded wave fronts as fractal surfaces , 1994 .

[39]  James Roger P. Angel,et al.  Final review of adaptive optics results from the preconversion MMT , 1997, Optics & Photonics.

[40]  J. Angel,et al.  The Casting of the 6.5m Borosilicate Mirror for the MMT Conversion , 1992 .

[41]  G Rousset,et al.  Modal prediction for closed-loop adaptive optics. , 1997, Optics letters.

[42]  N. Ageorges,et al.  Laser guide star adaptive optics for astronomy , 2000 .

[43]  James Roger P. Angel,et al.  Infrared adaptive optics system for the 6.5-m MMT: system status and prototype results , 1998, Astronomical Telescopes and Instrumentation.

[44]  Walter J. Wild,et al.  Investigation of wavefront estimators using the Wavefront Control Experiment at Yerkes Observatory , 1995, Optics & Photonics.

[45]  Donald T. Gavel,et al.  Image improvement from a sodium-layer laser guide star adaptive optics system , 1997 .

[46]  J. Angel,et al.  Ground-based imaging of extrasolar planets using adaptive optics , 1994, Nature.

[47]  Nasser N Peyghambarian,et al.  Solid-state Raman lasers , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[48]  Herbert W. Friedman,et al.  Sodium beacon laser system for the Lick Observatory , 1995, Optics & Photonics.

[49]  D. Sandler,et al.  Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images. , 1993, Applied optics.

[50]  T K Barrett,et al.  Neural networks for control of telescope adaptive optics , 1997 .

[51]  James Roger P. Angel,et al.  First Results of an On-Line Adaptive Optics System with Atmospheric Wavefront Sensing by an Artificial Neural Network , 1992 .

[52]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[53]  W. O. Saxton,et al.  Measurement of the Transverse Electric Field Profile of Light by a Self-referencing Method with Direct Phase Determination References and Links " Measurement of Atmospheric Wavefront Distortion Using Scattered Light from a Laser Guide-star, " , 2022 .

[54]  Bruce Paul Jacobsen,et al.  Sodium laser guide star projection for adaptive optics , 1997 .

[55]  Kari Järvinen,et al.  Linear prediction theory, a mathematical basis for adaptive systems: by P. Strobach. Siemens AG, München, Fed. Rep. Germany. Publishers: Springer-Verlag, heidelberger Platz 3, Postfach, D-1000 Berlin 33, Fed. Rep. Germany, 1990, xvi+422 pages, ISBN 3-540-51871-1, 0-387-51871-1 , 1990, Signal Process..

[56]  J. A. Sanguinet,et al.  Coherent optical adaptive techniques. , 1974, Applied optics.

[57]  Daniel V. Murphy,et al.  Compensation of atmospheric optical distortion using a synthetic beacon , 1991, Nature.

[58]  C. Max,et al.  Image improvement from a sodium-layer laser guide star adaptive optics system , 1997 .

[59]  J. Angel,et al.  Adaptive optics for array telescopes using neural-network techniques , 1990, Nature.

[60]  T. von Karman,et al.  On the Statistical Theory of Turbulence. , 1937, Proceedings of the National Academy of Sciences of the United States of America.