Double plasmonic structure design for broadband absorption enhancement in molecular organic solar cells

Absorption enhancement by a double plasmonic nanostructure in molecular organic photovoltaics (OPVs) is theoretically investigated. The structure consists of a periodic array of metal nanodiscs on one side of the OPV active layers and a thin metal nanohole array on the other side. Excitation of coupled modes of localized surface plasmon polaritons at the nanodiscs and short-range surface plasmon polaritons at the nanohole array causes the electromagnetic field to be highly concentrated within the organic active layers, leading to a polarization-independent, broadband absorption enhancement in the visible and near-infrared portion of the solar spectrum. Calculations show that an optimized double plasmonic structure can enhance the total photon absorption by >125% for molecular OPVs based on a double heterojunction of an electron donor/hole transporter and an electron acceptor/transporter.

[1]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[2]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[3]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[4]  Francois Flory,et al.  Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend , 2007 .

[5]  Martin A. Green,et al.  Recent developments in photovoltaics , 2004 .

[6]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[7]  Carsten Rockstuhl,et al.  Photon management by metallic nanodiscs in thin film solar cells , 2009 .

[8]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[9]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[10]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[11]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[12]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[13]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[14]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[15]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[16]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[17]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[18]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[19]  Evgenii Mikhailovich Lifshitz,et al.  ELECTROSTATICS OF CONDUCTORS , 1984 .

[20]  Dieter Meissner,et al.  Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells , 2002 .

[21]  K. Leo,et al.  Small-molecule solar cells—status and perspectives , 2008, Nanotechnology.

[22]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[23]  Jurjen Wildeman,et al.  Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives , 2005 .

[24]  Yidong Huang,et al.  Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. , 2009, Optics letters.

[25]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[26]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[27]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[28]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[29]  Srinivas Sista,et al.  Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions , 2009 .

[30]  Daniel Abou-Ras,et al.  Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells , 2004 .

[31]  Martin Dressel,et al.  How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. , 2009, Physical review letters.

[32]  Qiaoqiang Gan,et al.  Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[33]  V. Shalaev,et al.  Nanophotonics with surface plasmons , 2007 .

[34]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[35]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[36]  Gang Li,et al.  Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) , 2005 .